

USER'S MANUAL VERSION 0604

BREC REPORT # 2008-16 June 2008

AGRICULTURAL POLICY/ENVIRONMENTAL EXTENDER MODEL

USER'S MANUAL

VERSION 0604

E.M. STEGLICH AND J.W. WILLIAMS

June 2008 BREC Report # 2008-16

BLACKLAND RESEARCH AND EXTENSION CENTER 720 EAST BLACKLAND ROAD • TEMPLE, TEXAS 76502

CONTENTS

THE APEX MODEL—USER'S MANUAL

CHAI	PTER I	
OVE	RVIEW	8
1.1	Master File (APEXFILE.DAT)	11
	APEX File Name Links	
Сна	PTER 2	
INPU'	T FILES	16
2.1	APEX Run File (APEXRUN.DAT)	16
2.2	The APEX Control File (APEXCONT.DAT)	18
2.3	The APEX Site Files (FILENAME.SIT)	
2.4	The APEX Site List (SITE****.DAT)	
2.5	The Subarea File (FILENAME.SUB)	36
2.6	APEX Subarea List File (SUBA****.DAT)	55
	How To Build APEX0604 *.sub File	56
	The Manual Approach:	56
2.7	The Soil Files (FILENAME.SOL)	
2.8	The APEX Soil List File (SOIL****.DAT)	73
2.9	The Operation Schedule Files (FILENAME.OPS)	
2.10		
2.11		
2.12	,	
2.13		
2.14		
2.15	,	
2.16	2	
2.17		
2.18		
2.19		
2.20	,	
2.21	,	
	S-curve parameters	
	S-curve parameter definitions	
	PARM definitions	
2.22		
2.23	The Herd File (HERD****.DAT)	140
Снаг	PTER 3	
	PUT DATA VARIABLES	145
	*.ASA – Annual Subarea File	
	*.AWS – Annual Watershed Outlet File	
	*.MAN – Special Manure Management Summary File	
	*.DPS – Daily Subarea Pesticide File	

2 (+ 1 (2) 1	149
3.6 *.ACN - Annual Soil Organic Carbon and Nitrogen File	
3.7 *.SCX – Summary Soil Organic Carbon and Nitrogen File	
3.8 *.SUS – Subarea Summary File	
3.9 *.SWT – Watershed Output to SWAT	
3.10 *.MSA – Monthly Subarea File	
3.11 *.DHY – Daily Subarea Hydrology File	
3.12 *.SAD – Daily Subarea File	
3.13 *.DRS – Daily Reservoir File	
3.14 *.MWS – Monthly Watershed File	
3.15 *.DWS – Daily Watershed Outlet File	
3.16 *.DGZ – Daily Grazing File	
3.17 *.DUX – Daily Manure Application File	
3.18 *.DDD – Daily Dust Distribution	
3.19 *.DCN – Daily Soil Organic Carbon and NItrogen File	
3.20 *.ACY – Annual Subarea Crop Yield File	
3.21 *.EFR – Runoff Event Flood Routing File	
3.22 *.EHY – Runoff Event Hydrographs File	
3.23 *.APS – Annual Pesticide File	
3.24 *.MSW – Monthly Output to SWAT	
3.25 *.DPW – Daily Watershed Pesticide File	
3.26 *.SPS – Pesticide Subarea Summary File	
3.27 *.ACO – Annual Cost File	
3.29 *.FSA – Special FSA Annual Subarea File	
3.30 *.SUB – Special Subarea File for GIS	
3.31 *.RCH – Special Reach File for GIS	
CHAPTER 4 APEX OUTPUT ANALYZER	171
4.1 Failed runs	171
4.1 Failed runs4.2 Problems that may or may not cause failed run	171 172
4.1 Failed runs4.2 Problems that may or may not cause failed run4.3 Problems that cause near 0 crop yield	171 172 172
 4.1 Failed runs. 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield. 4.4 General problems 	
 4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files 	
 4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation 	
 4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files 	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file)	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION.	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses Method 1: For the Layman User	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses Method 1: For the Layman User Method 2: For the Technical User	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses Method 1: For the Layman User Method 2: For the Technical User APPENDICES Appendix A—Watershed Definitions	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses Method 1: For the Layman User Method 2: For the Technical User APPENDICES Appendix A—Watershed Definitions Appendix B—Subarea Definitions	
4.1 Failed runs 4.2 Problems that may or may not cause failed run 4.3 Problems that cause near 0 crop yield 4.4 General problems 4.5 Completed runsexamine *.OUT files Preliminary investigation Runoff problemsthings to check 4.6 APEX****.out (The detailed simulator output file) CHAPTER 5 VALIDATION 5.1 Validation of Crop Yields 5.2 Model Adjustment for Validating Runoff and Sediment Losses Method 1: For the Layman User Method 2: For the Technical User APPENDICES Appendix A—Watershed Definitions	

References	216
Appendix J—APEX Balances Variable Definitions	212
Appendix I—APEX publications	
Appendix H—Parm Definitions	200
Appendix G—Routing Reach & Channel Manning's N (RCHN & CHN)	199
Appendix F—Manning's N Surface Roughness (UPN)	198
Appendix E—Adding Subarea(s)	195

CHAPTER 1

OVERVIEW

APEX is a tool for managing whole farms or small watersheds to obtain sustainable production efficiency and maintain environmental quality. APEX operates on a daily time step and is capable of performing long term simulations (1-4000 years) at the whole farm or small watershed level. The watershed may be divided into many homogeneous (soils, land use, topography, etc.) subareas (<4000). The routing component simulates flow from one subarea to another through channels and flood plains to the watershed outlet and transports sediment, nutrients, and pesticides. This allows evaluation of interactions between fields in respect to surface run-on, sediment deposition and degradation, nutrient and pesticide transport and subsurface flow. Effects of terrace systems, grass waterways, strip cropping, buffer strips/vegetated filter strips, crop rotations, plant competition, plant burning, grazing patterns of multiple herds, fertilizer, irrigation, liming, furrow diking, drainage systems, and manure management (feed yards and dairies with or without lagoons) can be simulated and assessed.

Most recent developments in APEX0604 include:

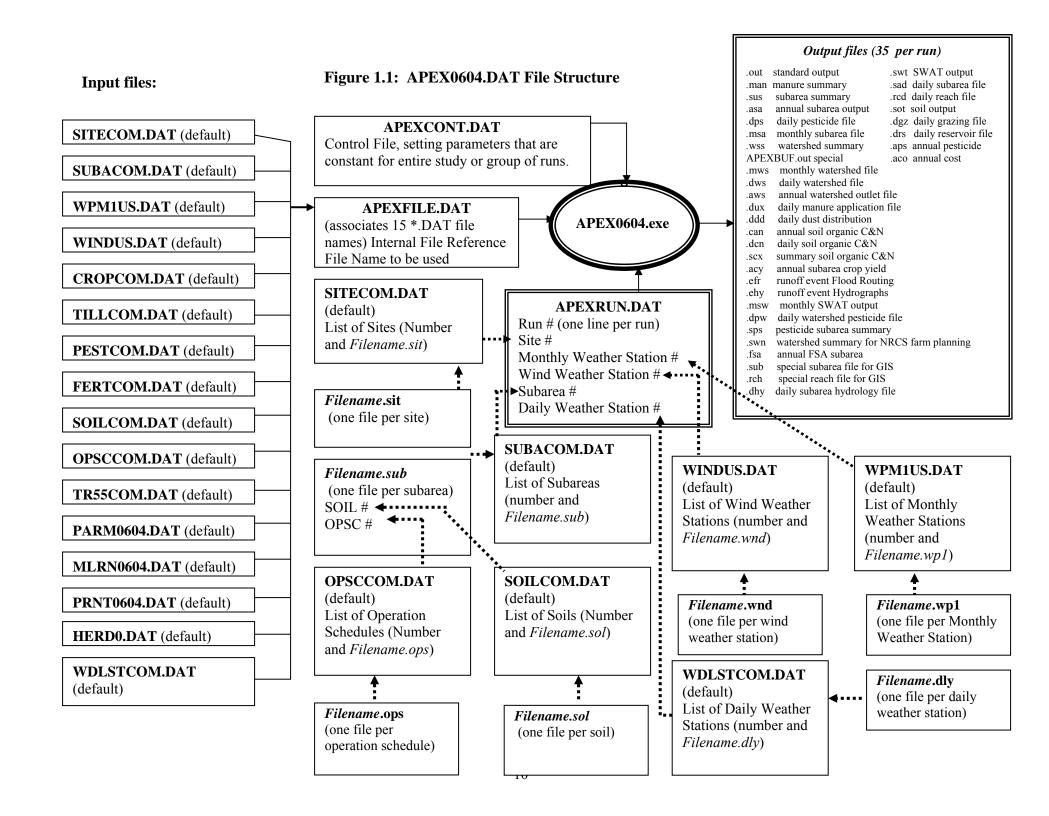
- Flexible grazing schedule of multiple owners and herds across landscape and paddocks.
- Wind dust distribution from feedlots.
- Manure erosion from feedlots and grazing fields.
- Optional pipe and crack flow in soil due to tree root growth.
- Enhanced filter strip consideration.
- Extend lagoon pumping and manure scraping options.
- Enhanced burning operation.
- RUSLE soil loss simulation
- Carbon pools and transformation equations similar to those in the Century model.

Data Structure. The framework of the APEX data structure consists of three files—APEXFILE.DAT, APEXCONT.DAT, and APEXRUN.DAT. APEXFILE is a list of the file names that are used in the run and provide a reference for APEX in determining what data is to be used for each run. APEXCONT contains data that controls the run i.e. run length, option selections, defaults, etc. APEXRUN is a list of run names and numbers that specify the site, weather parameter, and subarea files. An overview of the files and data flow is given in Figure 1.1.

Note: in the following, where *filename*.* is used, this indicates that the user may supply the file name, with the appropriate * extension; those file names must be listed appropriately in *APEXFILE.DAT*).

Constant Data. The *APEXCONT.DAT* file contains parameters that will be held constant for the entire study, e.g., number of years of simulation, period of simulation, output print specification, weather generator options, etc. This file cannot be renamed.

Sites. The study may involve several sites (fields, farms, or watersheds). A file named *filename.sit* is used to describe each site. *SITECOM*.DAT (or user chosen name) is used to reference the numbered list of the sites and their file names.


Weather. Weather stations are numbered and identified in *WPM1MO.DAT*, and wind data for the stations are numbered and identified in *WINDMO.DAT*. *WPM1MO.DAT* (or user chosen name) and *WINDMO.DAT* (or user chosen name) are used to reference the numbered list of the weather stations and their file names. A file named *filename.wp1* is used to describe each weather station statistics while a file named *filename.wnd* is used to describe each wind statistics.

Subarea. Each site in the study may involve several subarea arrangements (e.g. fields/subareas with or without buffers and filter strips, etc.). A file named *filename.sub* is used to describe each subarea or Hydrologic Landuse Unit (HLU), which is homogenous with respect to climate, soil, landuse, and topography. The subareas may be linked with each other with respect to the water routing direction towards a single or multiple watershed or farm outlet(s) (explained later in the documentation). Within each *filename.sub* the user needs to specify a dominant soil and operation schedule for each subarea from the list of soils in *SOILCOM.DAT* and list of operation schedule in *OPSCCOM.DAT*. *SUBACOM.*DAT (or user chosen name) is used to reference the numbered list of the subareas and their file names.

Soils. The study may involve several different soils for the farm or watershed analysis. A file named *filename.sol* is used to describe each soil and the *SOILCOM.DAT* file (or user chosen name) is used to reference the numbered list of the soils and their file names.

Operation Schedules. Each subarea or field of the watershed or farm study is described with a unique landuse unit or operation schedule (e.g. crops and crop rotations with typical tillage operations, ponds or reservoir, farmstead with or without lagoon, etc.). Each operation schedule is in a file named *filename.ops*. Each operation schedule must be numbered and listed in the *OPSCCOM.DAT* (or user specified file), which is used as a reference to the numbered list of the operation schedules and their file names.

Execution of Runs. Once all of the files have been set up properly, APEX0604, a compiled FORTRAN program, can be executed by opening a DOS command prompt window, changing to the directory where the program files have been copied, and typing the command "APEX0604.exe".

1.1 MASTER FILE (APEXFILE.DAT)

APEX FILE NAME LINKS

Table 1.1 is a list of file names and descriptions associated with APEX files referenced in the APEXFILE.DAT file. Table 1.2 is a list of APEX file names and descriptions.

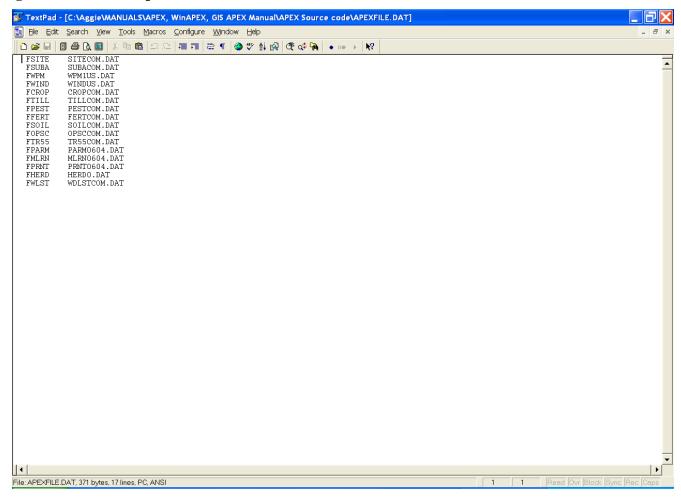

FORMAT: F****; TEN (10) SPACES FOLLOWED BY TWENTY (20) ALPHA CHARACTERS. SEE FIGURE 1.2.

Table 1.1: List of file names referenced in APEXFILE.DAT

Default File Name (*.DAT)	Description	
SITECOM	A list of site files that can be selected to create runs. The input data for each of the site files is contained in the <i>filename.sit</i> files.	
SUBACOM	A list of subareas that can be selected to create runs. The input data for each of the subarea files is contained in the <i>filename.sub</i> files.	
WPM1US	A list of monthly weather stations, ordered by weather station number which can be used in creating runs. This file also gives the latitude, longitude, state and location of the weather station.	
WINDUS	A list of wind stations, ordered by wind weather station number, which can be used in creating runs. This file also gives the latitude, longitude, state and location of the wind station.	
CROPCOM	Crop parameter file. This file is a list of crops and the associated crop parameters needed by APEX to simulate crop growth.	
TILLCOM	A list of field operations (equipment) and the associated tillage input data.	
PESTCOM	A list of pesticides and the associated input data.	
FERTCOM	A list of fertilizers and the associated input data.	
SOILCOM	A list of soil files that can be selected to create runs. The input data for each of the soil files is contained in the <i>filename.sol</i> files.	
OPSCCOM	List of available operation schedules which can be used to create runs. The input data for each of the operation files is contained in the <i>filename.ops</i> files.	
TR55COM	Data for TR55 runoff estimation	
PARM0604	Equation parameters and coefficients	

Default File Name (*.DAT)	Description
MLRN0604	Provides for multiple runs at the same site by including an option for selecting consecutive weather seeds and water erosion without reloading the inputs.
PRNT0604	Includes the control data for printing select output variables in the sections of the APEX0604.out file and other summary files.
HERD0	Includes parameters for simulating herds of animals and grazing.
WDLSTCOM	A list of daily weather stations and their corresponding latitude and longitude values ordered by weather station number which can be used in creating runs.

Figure 1.2: Two sample APEXFILE.DAT screens

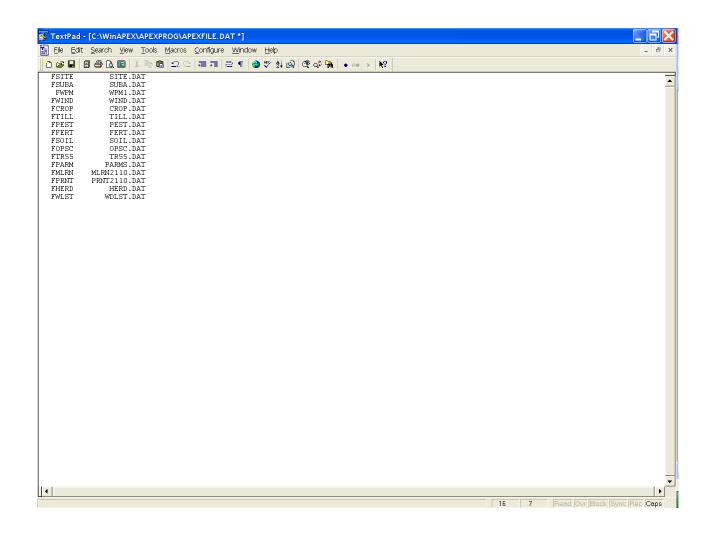


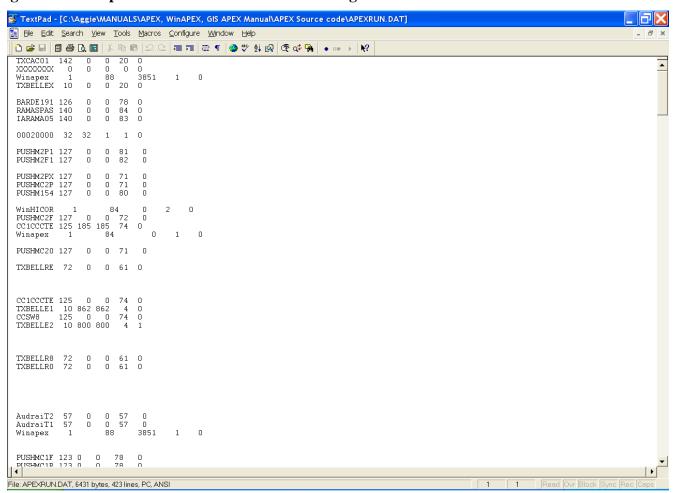
Table 1.2 APEX filenames and descriptions

Default File Name	Description
APEXRUN.DAT	Rows of data organized by run name and numbers identifying site, weather station, wind station and subarea files needed for each run
APEXCONT.DAT	Control file—specifies run length, option selections, defaults, etc. This input data does not change between runs included in APEXRUN.dat.
filename.sit	Input data which describes each site. Includes data that does not vary across subareas associated with the site.
filename.wp1	Monthly weather statistics input data for the weather station.
filename.wnd	Monthly wind statistics input data for the weather station.
filename.sub	Includes input data that characterize each subarea.
filename.sol	Includes input data that characterize each soil.
filename.ops	Includes input data for all operation schedules.
filename.dly	Daily weather input data for the weather station

CHAPTER 2

INPUT FILES

2.1 APEX RUN FILE (APEXRUN.DAT)


When APEX is executed, each row in the APEXRUN.DAT file is read to determine the configuration of the runs to be made (one row per run). Figure 2.1 shows the structure of the APEXRUN.DAT file. Numerous runs can be set up; however, not all must be run at the same time. To tell the model to stop, a "XXXXXXXXX $0 \ 0 \ 0 \ 0$ " line is inserted after the last run to be simulated. Each line consists of a new run.

FORMAT: SIX (6) FIELDS; FREE FORMAT; SEE FIGURE 2.1

Field	Variable	Description
1	ASTN	Run name and/or #number (provides a unique id for each run so that output files are not written over)
2	ISIT	Site number; must be one of the sites listed in the SITECOM.dat file.

Field	Variable	Description
3	IWPN	Monthly weather station number; must be one of the stations in the WPM1US.dat file; if left blank, APEX will use the latitude and longitude from ISIT to choose a station with a latitude and longitude closest to the latitude and longitude identified in the ISIT.
4	IWND	Wind Station number; must be one of the stations in the WINDUS.dat file; if left blank, APEX will use the lat and long from ISIT to choose a station.
5	ISUB	Subarea number; must be one of the subarea data files listed in the SUBACOM.dat file.
6	ISOL	Daily weather station number. Must be one of the stations in the WDLSTCOM.dat file; if left blank, APEX will use the latitude and longitude from ISUB or ISIT to choose a station with a latitude and longitude closest to the latitude and longitude identified in the ISUB or ISIT.

Figure 2.1: Sample APEXRUN.DAT screen showing numerous runs

2.2 THE APEX CONTROL FILE (APEXCONT.DAT)

One file, APEXCONT.DAT, includes a variety of data parameters that will be held constant for all of the runs defined in the APEXRUN.DAT. APEXCONT.DAT includes the following data elements:

Field	Variable	Description
LINE 1:	FORMAT:	20 FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER)
1	NBYR	Number of Years for Simulation Duration (cols. 1-4) The number of years can be any number from 1 to hundreds of years; however, 20 to 30 years may be adequate to estimate frequency distributions used to solve many problems. (Range: 1-100)
2	IYR	 Beginning Year of Simulation (cols. 5-8) If the starting year is before the first year of the historical weather data, ALL weather will be generated. Once the model starts generating weather, it continues until the end of the simulation. For example, if the historical weather data begins on Jan. 1, 1960 and the beginning year of the simulation is 1956, then all of the weather will be generated starting on Jan. 1, 1956 and continue to the end of the simulation period. If the simulation period starts on a year included in the historical weather file, but the weather data does not extend out for the complete simulation period, weather will be generated from the point the historical weather data ends to the end of the simulation period. For example, if the historical weather data begins on Jan. 1, 1960 and extends to Dec. 31, 2000 and the simulation period is from Jan. 1, 1996 to Dec. 31, 2005, then generated weather will be used beginning Jan. 1, 2001 and continue to the end of the simulation period (Dec. 31, 2005). (Range: 1-2040)
3	IMO	Beginning Month of Simulation (cols. 9-12) Most long-term simulations start on January 1. Starting after January 1 may be convenient for simulating systems where data are only recorded during the growing season. (Range: 1-12)
4	IDA	Beginning Day of Simulation (cols. 13-16) Most long-term simulations start on January 1. Starting after January 1 may be convenient for simulating systems where data are only recorded during the growing season. (Range: 1-31)

Field	Variable	Description
5	IPD	Print Code for Type of Output (cols. 17-20) The print code (IPD) allows the user to specify daily, monthly, or annual output, with or without printing tables describing soil conditions. Annual printouts minimize output volume and may be useful for some long-term simulations. Monthly outputs enable the user to evaluate model performance within the growing season or to examine seasonality of runoff, erosion, and other processes more closely than with annual printouts. Monthly outputs are normally obtained in short-term (1-10 year) simulations and are particularly useful in model testing. Daily outputs are also useful for model testing and for comparison with detailed experimental data. To obtain the desired type of output, IPD can be set to values from 0 to 9, as described below. (Range: 0-9)
		N0 for annual watershed output N1 for annual printout N2 for annual with soil table N3 for monthly N4 for monthly with soil table N5 for monthly with soil table at harvest N6 for n day interval N7 for soil table only n day interval N8 for n day interval, rainfall days only N9 for n day interval during growing season N year interval N=0 same as N=1 except N=0 prints operations
6	NGN	Input Code for Weather Variables (cols. 21-24) APEX allows the user to read one or more daily weather variables from an external file that is specified by the user. The weather input code, NGN, specifies which variables will be read; all others will be generated by APEX's stochastic weather data generator. (Range: -1 to 2345) If NGN is not set to zero, precipitation is read from the external file designated at the end of the APEX input dataset. In addition to precipitation, any combination of the other daily weather variables can be read. The integers 1 through 5 are used to identify specific weather inputs, as follows: [1] Precipitation [2] Maximum and minimum temperatures [3] Solar radiation [4] Average wind speed [5] Average relative humidity

If any daily weather variables are input, precipitation must also be input. Thus it is not necessary to specify ID=1 unless rain is the only input variable Example values of NGN are given below.

Field	Variable	Description	
	NGN,	NGN=[0]	Generate all weather variables (spatially distributed).
	cont.	NGN=[-1]	Generate all weather variables (same values for all subareas)
		NGN=[1]	Read precipitation; generate other variables.
		NGN=[2]	Read maximum and minimum temperatures and precipitation; generate other variables.
		NGN=[3]	Read solar radiation and precipitation; generate other variables
		NGN=[4]	Read wind speed and precipitation; generate other variables.
		NGN=[5]	Read relative humidity and precipitation; generate other variables.
		NGN=[23]	Read maximum and minimum temperatures, solar radiation, and precipitation; generate wind speed and relative humidity.
		NGN=[2345]	Read all weather variables
		NOTE: if MI DNI****	DAT is activated with years \0. then NGN must be equal

NOTE: if MLRN****.DAT is activated with years>0, then NGN must be equal to 0 for measured weather to be actually simulated in MLRN****.DAT.

NOTE: If weather data in not available for selected parameters, weather data is automatically generated. The model will use all available data for the selected parameters, and generate when data for those select parameters is missing.

7 IGN Number of Times Random Number Generator Cycles Before Simulations Starts (cols. 25-28)

The random number generator is used to generate stochastically a series of daily weather data for input into other components of APEX. By changing IGN, the user can alter the sequence of generated weather data without changing its long-term statistical properties. (Range: 0-100)

To use the default random numbers, the user should set IGN to 0. This is the default value for IGN

In some situations, a user may wish to vary the weather sequence between runs. This is done by setting IGN to a different number each time the model is run.

This code will activate a random number generator, which will replace the default set of random numbers with a new set. The value to which IGN is set determines the number of times the random number generator is cycled before the simulation begins. The seeds produced by the random number generator are then used by the weather generator instead of the default values. Historical weather data read into the model is not affected by this variable. However, if the historical weather data contains missing data, the weather generator will be

Field	Vowiahla	Description
Field	Variable	Description
	IGN, cont.	used to generate data to replace the missing data. The generated data used to replace the missing data is affected by this variable.
		If IGN and the monthly weather statistics are not changed, successive simulations will have identical weather sequences.
8	IGSD	Day Weather Generator Stops Generating Daily Weather (cols. 29-32) This variable is used for real time simulations. When IGSD is a negative integer, it indicates the total number of whole and partial years of input weather data. Normally, only a partial year (January 1 to planting date, for example) of measured weather data are used, thus IGSD = -1. To estimate 20 alternative yield possibilities using inputted weather data for only part of a year, set NBYR to 20 and IGSD to -1. (Range: -n to 366)
		IGSD can also be used to simulate yield where the same weather data set is used many times. For example, if IGSD is set to -3, this tells the model to reuse the three years of inputted weather data then rewind and use it again multiple times until NBYR is met.
		 Normal operation of weather model Duplicate weather in a given year up to date n Rewinds weather after n years Gives a rough estimate of the average yield with only two years of simulation.
9	LPYR	 Leap Year Considered (cols. 33-36) (Range: 0-1) Leap year is considered Leap year is ignored. Tells the model to expect only 365 days of input and generate only 365 days of weather ignoring February 29th. February 29th should be deleted from the weather input file.
10	IET	Potential Evapotranspiration Equation Code (cols. 37-40) During the past 50 years, agricultural scientists have developed several empirical equations to estimate potential evapotranspiration (PET), the evaporation from a well-watered turf or crop in which the canopy completely covers the soil surface. APEX enables the user to choose which equation will be used to estimate PET. (Range: 0-5)
		0 *(default) Penman-Monteith (usually for windy conditions)
		1 *Penman-Monteith (usually for windy conditions) – adds a logarithmic eddy diffusion function and canopy resistance to the Penman equations.
		2 *Penman – adds relative humidity, wind speed, and elevation of wind measurements to the required weather inputs.

Field Variable Description IET 3 Priestley-Taylor – requires radiation, as well as temperature as an input. 4 Hargreaves – has two parameters which can be adjusted to calibrate the model for factors such as proximity to a major water body. 5 Baier-Robertson * Requires the entry of elevation (ELEV), monthly mean wind velocities (WVL). These equations also need relative humidity; however, if relative

11 ISCN Stochastic CN Estimator Code (cols. 41-44)

used.

The final step in APEX's estimation of runoff volume is an attempt to account for uncertainty. The runoff retention parameter or curve number is based on land use, management, hydrologic soil group, land slope, soil water content and distribution. It is also adjusted for frozen soil. However, many natural processes and management factors that can affect runoff are not accounted for in the model. APEX enables the user to use either a deterministic or a stochastic method of estimating CN. If the deterministic method is chosen, the curve number is adjusted daily for soil water content (and frozen soil). If the stochastic method is chosen, the deterministic value is varied stochastically on a daily basis using a triangular distribution. The extremes of the distribution are +/- 5 curve numbers from the mean. (Range: 0-1)

humidity is blank, EPIC will estimate relative humidity. Dew point can also be

- O Stochastic curve number estimator (default)
- >0 Rigid curve number estimator (Deterministic)

12 ITYP Peak Rate Estimate Code (cols. 45-48)

Types I and IA represent the Pacific maritime climate with wet winters and dry summers. Type III represents Gulf of Mexico and Atlantic coastal areas where tropical storms bring large 24-hour rainfall amounts. Type II represents the rest of the country. For more precise distribution boundaries in a state having more than one type, contact the SCS State Conservation Engineer (SCS 1986). (Range: -1 to 4)

- 0 Modified Rational EQ Stochastic Peak Rate Estimate
- -1 Modified Rational EQ Rigid Peak Rate Estimate
- >0 SCS TR55 Peak Rate estimate
 - $1 \rightarrow \text{Type 1 rainfall pattern}$
 - $2 \rightarrow \text{Type } 1A \text{ rainfall pattern}$
 - $3 \rightarrow \text{Type 2 rainfall pattern}$
 - $4 \rightarrow \text{Type } 3 \text{ rainfall pattern}$

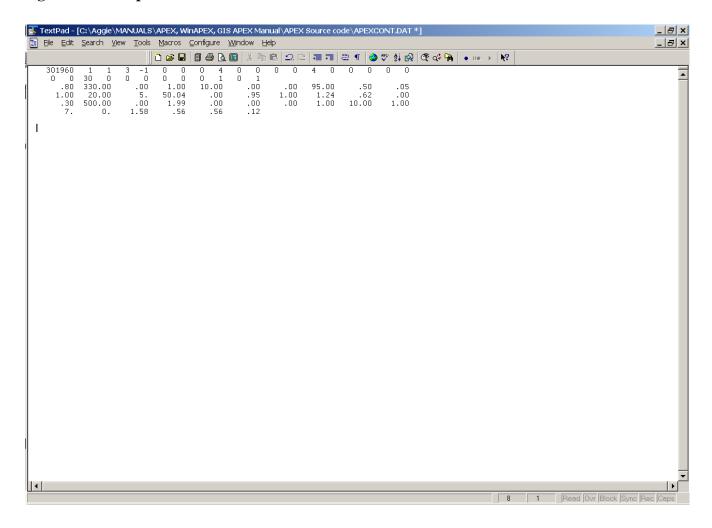
Field	Variable	Description
13	ISTA	Static Soil Code (cols. 49-52) This code is set up to allow EPIC to estimate soil erosion but not change the soil profile other than readily available nutrients and water. With this option set at 1 it is possible to simulate multiple years of weather on the same soil and estimate erosion under alternative weathers. (Range: 0-1)
		0 Normal erosion of soil profile1 Static soil profile
14	IHUS	 Automatic Heat Unit Scheduling (cols. 53-56) Based on potential heat units (PHU) (Range: 0-1) Normal operation Automatic heat unit schedule (Number of growing degree units needed for crop to reach maturity (PHU) must be input at planting)
		NOTE: This option works as follows: In the first year of the run, all operations are assigned a heat unit fraction based on the total number of heat units inputted at planting and dates assigned to each operation. Calculation of heat units is based on monthly weather statistics. In the following years all operations will occur based on the heat unit schedule assigned to them. This can be used to help adjust operations to the weather (temperatures) from year to year.
		Operations occurring from planting to harvest are based on heat units set at planting. Operations occurring before planting are based on total annual heat units, which are calculated by the model.
15	NVCN	Non-varying CN-CN2 Used (cols. 57-60) (Range: 0-4)
		 Variable daily CN nonlinear CN/SW with depth soil water weighting Variable daily CN nonlinear CN/SW without depth weighting Variable daily CN linear CN/SW no depth weighting Non-varying CN – CN2 used for all storms Variable daily CN SMI (soil moisture index)
16	INFL	Runoff (Q) Estimation Methodology (cols. 61-64) (Range: 0-3)
		 CN estimate of Q Green & Ampt estimate of Q, Rain Fall Exponential Distribution, Peak Rain Fall Rate simulated G&A Q, Rain Fall Exponential Distribution, Peak Rain Fall Input G&A Q, Rain Fall uniformly Distribution, Peak RF Input

Field	Variable	Description
17	MASP	Pesticide Output in Mass and Concentration (cols. 65-68) (Range: 0-1) 0 Mass only, pesticides in .OUT file >0 Pesticides & nutrient output in mass and concentration
18	IERT	Enrichment Ratio Method (cols. 69-72) Sets how much organic material is lost in runoff. (Range: 0-1) 0 EPIC enrichment ratio method 1 GLEAMS enrichment ratio method
19	LBP	 Soluble Phosphorus Runoff Estimate Equation (cols. 73-76) (Range: 0-2) Soluble Phosphorus runoff estimate using GLEAMS pesticide equation Vadas equation Modified nonlinear equation
20	NUPC	N and P plant uptake concentration code (cols. 77-80) (Range: 0-1) 0 Smith Curve 1 S-Curve
LINE 2	FORMAT:	TWENTY (20) FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER)
1	MNUL	 Manure application code (cols. 1-4) (Range: 0-3) O Auto application to subarea with minimal labile P concentration 1 Variable limits on annual application based on Jan. 1 labile P concentration 2 Variable N rate limits on annual application based on Jan. 1 labile P concentration. 3 Same as 1 except applications occur on one subarea at a time until labile P concentration reaches 200 ppm. Then another subarea is used, etc.
2	LPD	 Lagoon pumping (cols. 5-8) (Range: 0-365) Does not trigger extra pumping Day of year to trigger lagoon pumping disregarding normal pumping trigger- usually before winter or high rainfall season.
3	MSCP	Solid manure scraping (cols. 9-12) (Range: 0-365) 0 Does not scrape extra manure from feeding area >0 Interval for scraping solid manure form feeding area in days
4	ISLF	Slope length/steepness factor (cols. 13-16) (Range: 0-1) 0 RUSLE slope length / steepness factor >0 MUSLE slope length / steepness factor

Field	Variable	Description
rieiu	v al lable	Description
5	NAQ	 Air Quality Analysis (cols. 17-20) (Range: 0-1) No air quality analysis Air quality analysis
6	IHY	Flood Routing (cols. 21-24) (Range: 0-1) 0 No flood routing; 1 Flood routing
7	ICO2	 Atmospheric CO₂ (cols. 25-28) (Range: 0-2) Constant atmospheric CO₂ Dynamic atmospheric CO₂. Base year = 1905; base conc. = 280 ppm Dynamic atmospheric CO₂. Inputted through daily weather file.
8	ISW	 Field Capacity/Wilting Point Estimation (cols. 29-32) (Range: 0-3) Field capacity/wilting point estimated using the Rawls method (dynamic) Field capacity/wilting point inputted using Rawls method (dynamic) Field capacity/wilting point estimated using Rawls method (static) Field capacity/wilting pointed inputted (static)
9	IGMX	Number of times generator seeds are initialized for a site (cols. 33-36) (Range: 1-100)
10	IDIR	 Data Directory (cols.37-40) (Range: 0-1) Reading data from working directory Reading from a directory other than the working directory
11	IMW	Minimum Interval between auto mow (cols.41-44) This refers to the minimum length of time (days) set between mowings when the Auto Mow function is used in the operation schedule. The crop will be mowed at this interval given the crop height is greater than the cutting height set on the mower used in the operation. If the IMW is set in the control table, there is no need to set the IMW in the Subarea file unless 1 or more subarea IMW intervals differ from the interval set here. In all cases, for the IMW to take effect, an automatic mower must be in the operation schedule. (Range: 0-365)
12	IOX	O ₂ – depth function (cols. 45-48) (Range: 0-1) 0 Original EPIC Oxygen/Depth function >0 Armen Kemanian Carbon/Clay function
13	ISAP	Enter subarea number (NBSA) to print monthly .OUT for 1 subarea (cols.49-52) (Range: 1-1000)

LINE 3 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

Field	Variable	Description
1	RFN	Average concentration of nitrogen in rainfall (cols. 1-8) The average concentration of N in rainfall may vary slightly for different locations. However, since the rainfall N contribution is a relatively small component of the N cycle, a value of 0.8 ppm or mg N/liter is generally satisfactory. If site-specific information is available, the user is free to set the value appropriately. (Range: 0.5-1.5)
2	CO2	Carbon dioxide concentration in atmosphere (cols. 9-16) Current amount of carbon dioxide in the atmosphere in ppm. Currently the level is 350 ppm. (Range: 0-1000)
3	CQN	Concentration of NO3-N in irrigation water in ppm (cols. 17-24) (Range: 0-1000)
4	PSTX	Pest damage scaling factor (cols. 25-32) (Range: 0-10) The factor scales the growth of pests (insects and diseases only) in terms of population growth. It ranges from 0 (no pest growth-pest damage function is shut off) to 10 (maximum pest growth). Under default conditions this parameter is set to 1.00 which produces only minimal pest growth and does not affect yield. This parameter works in conjunction with Parm 9 and 10.
5	YWI	Number years of maximum monthly 0.5 hour rainfall available. (cols. 33-40) Can be obtained from the U.S. Department of Commerce (BLANK if WI is not inputted.) (Range: 0-20)
6	BTA	COEF (0-1) governing wet-dry probabilities given days of rain. (cols. 41-48) Used to estimate wet-dry rainfall probabilities if information is only available for the average monthly number of wet days. Generally the number of wet days is much more readily available than the wet-dry rainfall probabilities. A value of 0.75 for BTA usually gives satisfactory estimates of the wet-dry probabilities. May be left zero if daily rainfall is inputted. May be left zero if rainfall is generated and wet-dry probabilities are input. (Range: 0-1)
7	EXPK	Parameter used to modify exponential rainfall amount distribution (cols. 49-56) The modified exponential distribution is used to generate rainfall amounts if the standard deviation and skew coefficient are not available. An EXPK value of 1.3 gives satisfactory results in many locations. May be left 0.0 if unknown or if standard deviation of rainfall and skew coefficient for daily precipitation is input. (Range: 0-2)


Field	Variable	Description
8	QG	Channel Capacity Flow Rate (cols. 57-64) 2 year frequency 24-h rainfall. Estimates reach channel geometry in mm/h if unknown. (Range: 1-100) (BLANK if channel geometry is input by Channel bottom width/depth (BWD))
9	QCF	Exponent in watershed area flow rate equation. (cols. 65-72) (Range: 0.4-0.6)
10	CHSO	Average upland slope (m/m) in watershed (cols. 73-80) (Range: 0.001-0.7)
LINE 4	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)
1	BWD	Channel bottom width/depth in m/m; Channel flow rate $(QG) > 0$. (cols. 1-8) (Range: 1-20)
2	FCW	Floodplain width/channel width in m/m (cols. 9-16) (Range: 2-50)
3	FPSC	Floodplain saturated hydraulic conductivity in mm/h (cols. 17-24) (Range: 0.0001-10)
4	GWSO	Maximum ground water storage in mm (cols. 25-32) (Range: 5-200)
5	RFTO	Ground water residence time in days (cols. 33-40) (Range: 0-365)
6	RFPO	Return Flow / (Return Flow + Deep Percolation) (cols. 41-48) (Range: 0-1)
7	SATO	Saturated Conductivity adjustment factor (cols. 49-56) (use with Green & Ampt). (Range: 0.01-10)
8	FL	Field length (if wind erosion is to be considered) (cols. 57-64) If the normal wind erosion calculation is to be utilized (Wind Erosion Adjustment Factor (ACW) = 1.), field dimensions and orientation must be specified. This variable refers to the length of the field that is exposed to the wind. Without trees, FL = length of the field. With trees, FL < length of the field. If wind erosion is simulated for specific sites, FL, FW and ANG can be measured easily. However, hypothetical sites are often used in long-term simulations associated with large-scale decision making. In such cases, values of FL, FW and ANG should be chosen to represent typical field configurations of the area. Efforts to match field dimensions and drainage area are not necessary. The field dimensions are used only to estimate wind erosion, with the exception that FL is used to estimate water erosion from furrow irrigation.

Field	Variable	Description
	FL cont.	Thus, the simulation site may be a small area (1 ha) in a field of 1.0 by 0.5 km. It should be noted that the change in simulated wind erosion is not large for any $FL > 0$. 3 km. Therefore, estimations of FL and FW are not usually critical for fields with areas greater than about 10 ha. When fields larger than 10 ha are strip cropped, however, the estimation of FW becomes more important. To evaluate the effect of strip cropping, FW is estimated as the average width of the strips. FL may be left at 0.0 if unknown, and it will be estimated. (Range: 0.001-12)
9	FW	<i>Field width (if wind erosion is to be considered) (cols. 65-72)</i> See variable FL for further information. FW may be left at 0.0 if unknown, and it will be estimated. (Range: 0.001-12)
10	ANG	Clockwise angle of field length from north (if wind erosion is to be considered) (cols. 73-80) See variable FL for further information. ANG may be left at 0.0 if unknown, and it will be estimated. If ANG is known, enter the value in degrees. (Range: 0-360)
LINE 5	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)
1	UXP	Power Parameter of Modified Exponential Distribution of Wind Speed (if wind erosion is to be considered) (cols. 1-8) The power parameter of the modified, exponential wind speed distribution ranges from about 0.3 to about 0.7. A value of [.50] usually gives satisfactory estimates of daily wind speed. UXP may be left at 0.0 if unknown, and it will be estimated. (Range: 0-1)
2	DIAM	Soil Particle Diameter(if wind erosion is to be considered) (cols. 9-16) If value is known enter it in micron. Normally this value ranges from 300 – 500 um (sands). Used only in wind erosion. May be left BLANK if unknown. (Range: 100-500)
3	ACW	Wind Erosion Adjustment Factor (cols. 17-24) The wind erosion adjustment factor is used along with PEC values to shut off or accelerate erosion. As with water erosion, wind erosion can be shut off by setting ACW = O. If normal wind erosion calculation is desired, set ACW = 1. Also, AWC can be increased to a high level ACW=[10.00])as a short cut in estimating wind erosion effects on the soil profile. Since ACW is related linearly to wind erosion, 1000year' simulation can be approximated by 100 years' simulation using ACW=10. (Range: 0-10)

Field	Variable	Description
4	GZL0	Grazing limit (cols. 25-32) This is the minimum amount of plant material (t/ha) that must be present in order to allow grazing. Grazing will not be initiated until this limit has been reached. (Range: 0.001-5.0)
		Optional - If > 0, overrides all herd minimum grazing limits in owner's table.
5	RTN0	Number of years of cultivation at start of simulation (cols. 33-40) This parameter affects the partitioning of nitrogen and carbon into the passive and slow humus pools. The number of years of cultivation before the simulation starts is used to estimate the fraction of the organic N pool that is mineralizable. Mineralization is more rapid from soil recently in sod. Also increasing the number of years the field has been in cultivation increases the amount of C and N in the passive pool. This means it will take longer for the carbon and nitrogen to become available. (Range: 0-1000)
6	BXCT	Linear coefficient of change in rainfall from east to west (PI/PO/KM) (cols. 41-48) (Range: 0-1) PI = Average Annual precipitation on East side of watershed PO = Average Annual precipitation on West side of watershed
7	ВҮСТ	Linear coefficient of change in rainfall from south to north (PI/PO/KM) (cols. 49-56) (Range: 0-1) PI = Average Annual precipitation on South side of watershed PO = Average Annual precipitation on North side of watershed
8	DTHY	Time interval for flood routing (hours) (cols. 57-64) (Range: 0.5-12)
9	QTH	Routing Threshold (mm) – VSC routing used when QVOL>QTH (cols. 65-72) (Range: 0-200000) VSC = Variable Storage coefficient QVOL = Daily volume of runoff QTH = Routing Threshold
10	STND	VSC Routing used when reach storage > STND (cols. 73-80) (Range: 0-200000) VSC = Variable Storage coefficient STND = Storage in reach daily

Field	Variable	Description
LINE 6	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)
1	DRV	 Equation for Water Erosion (cols. 1-8) (Range: 0-7) MUST Modified MUSLE theoretical based equation AOF Onstad-Foster USLE Universal Soil loss Equation MUSS Small Watershed MUSLE MUSLE Modified USLE MUSI Modified MUSLE with input parameters (see BUS(1)) RUSLE Revised Universal Soil Loss Equation RUSLE2 Modified RUSLE
2	PCO0	Fraction of subareas controlled by ponds (cols. 9-16) (Range: 0-1)
3	RCC0	<i>USLE Crop Management Channel Factor (cols. 49-56)</i> Must be entered. This number can be overridden if RCHC in the Subarea file is set. With bare channel condition, RCHC should be 0.1- 0.6, and if the channel has very good land cover, it should have a value of 0. 0001 (Range is 0.0001 - 0.6)
	BUS(1-4)	First through Fourth Parameter Estimates for MUSI Erosion Equation (cols. 17-24) These parameters are for those who feel they have more appropriate coefficients available for their particular geographical region, than those supplied with the other MUSLE equations. This enables one to input values into the MUSLE equation. The equation is as follows: $YSD(6) = BUS(1) \times QVOL^{BUS(2)} \times QRB^{BUS(3)} \times WSA^{BUS(4)} \times KCPLS$
	DIJG(1)	
4	BUS(1)	MUSI input according to equation above (cols. 25-32) (Range: 0-10)
5	BUS(2)	MUSI input according to equation above (cols. 33-40) (Range: 0-0.9)
6	BUS(3)	MUSI input according to equation above (cols. 41-48) (Range: 0-0.9)
7	BUS(4)	MUSI input according to equation above (cols. 49-56) (Range: 0-1.2)

Figure 2.2: Sample APEXCONT.DAT screen

2.3 THE APEX SITE FILES (FILENAME.SIT)

A study may involve several sites (fields, farms, or watersheds), which can be listed in SITECOM.DAT (or user chosen name). Each site is described and saved with *filename*.SIT and includes the following data elements:

LINE 1-3Three title lines are available for individual site description.

Field	Variable	Description
LINE 4		FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO CIMAL PLACES (FLOATING)
1	YLAT	Latitude of watershed in decimal degrees (cols. 1-8) The latitude of the field or watershed (YLAT) is used to estimate day length. It must be supplied by the user. Units are degrees. Latitudes in the Southern Hemisphere are in negative degrees and positive in the Northern Hemisphere. (Range: -90 to 90)
2	XLOG	Longitude of watershed in decimal degrees (cols. 9-16) (Range: -180 to 180)
3	ELEV	Average watershed elevation (cols. 17-24) The average watershed elevation should be input if the Penman or the Penman-Monteith approach is used to estimate potential evapotranspiration. Units are meters. (Range: -200 to 8000)
4	APM	Peak runoff rate – rainfall energy adjustment factor (cols. 25-32) The peak runoff-rate-rainfall energy adjustment factor provides a means for fine tuning the energy factor used in estimating water erosion. Normally, an APM value of 1 gives satisfactory results. (Range: 0-1)
5	CO2X	CO ₂ Concentration in the atmosphere (ppm) (cols. 33-40) A non-zero value overrides the CO ₂ input in APEXCONT.DAT. (Range: 0-1000)
6	CQNX	Concentration of NO ₃ in irrigation water (ppm) (cols. 41-48) A non-zero value overrides the CQN input in the APEXCONT.DAT. (Range: 0-1000)
7	RFNX	Average concentration of Nitrogen in rainfall (ppm) (cols. 49-56) (Range: 0.5-1.5)
8	UPR	Manure application rate to supply P uptake rate in kg/ha/yr (cols. 57-64) (Range: 0-1000)

9 UNR *Manure application rate to supply N uptake rate in kg/ha/yr (cols. 65-72)* (Range: 0-1000)

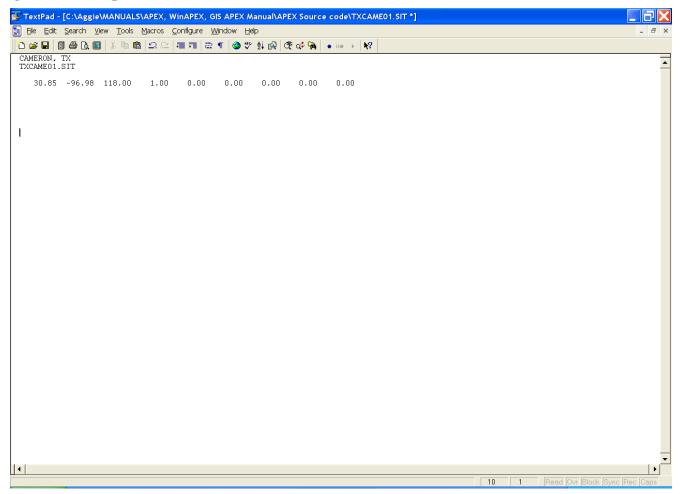
LINE 5 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING) Leave Blank

LINE 6 FORMAT: TWENTY (20) ALPHA CHARACTERS

Leave Blank

LINE 7 FORMAT: TWENTY (20) FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER)

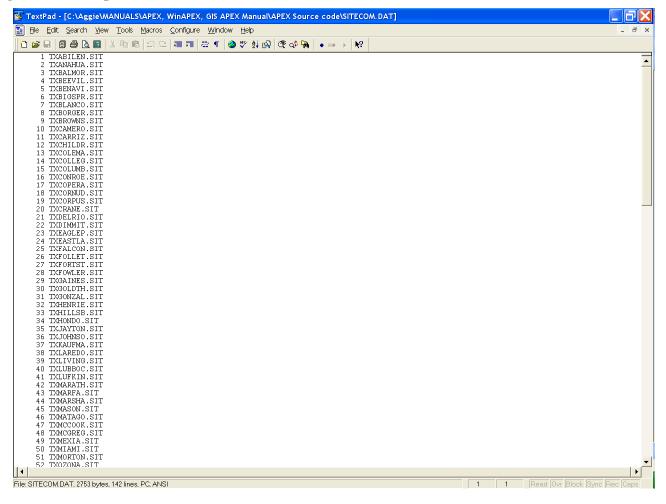
Weather parameter number (from WPM1US.DAT). For spatial weather generation. The format allows for 20 fields; however, only 10 fields are read.


LINE 8 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

Fraction of watershed area (WSA) represented by weather station number selected above (IWPM). For spatial weather generation (Range: 0-1)

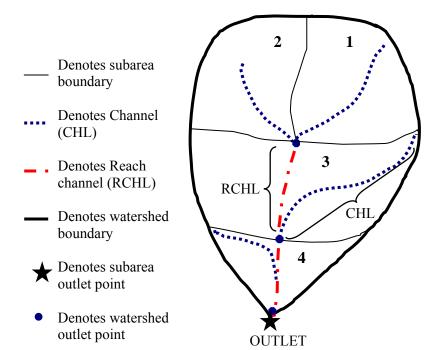
LINE 9 FORMAT: TWENTY (20) ALPHA CHARACTERS

Daily point source file name


Figure 2.3: Sample *.SIT file screen

2.4 THE APEX SITE LIST (SITE****.DAT)

The APEX Site list is a listing of all site files which have been previously created following the format described in section 2.3 and are available for use in creating runs. The Site list consists of a numbered listing of all site files which can be referenced by number in the APEXRUN.DAT file. The file is in FREE FORMAT. See Figure 2.4 for an example of the SITECOM.DAT file. The Site list file name may be user defined; however, it must be properly identified in the APEXFILE.DAT file.


Figure 2.4. Sample SITECOM.DAT file

2.5 THE SUBAREA FILE (FILENAME.SUB)

The farm or watershed study may involve several fields, or subareas, or as generally called homogenous hydrologic landuse units (HLU). Each subarea is homogenous in climate, soil, landuse (operation schedule), and topography. Therefore, the heterogeneity of a watershed/farm is determined by the number of subareas. Each subarea may be linked with each other according to the water routing direction in the watershed, starting from the most distant subarea towards the watershed outlet. The subareas are described in *filename.sub*. All *filename.sub* files need to be listed in SUBACOM.DAT (or user chosen name) to reference the numbered list of the subareas and their file names. Figure 2.5 illustrates a simple watershed with four subareas, which should help the user to understand how the routing mechanism can be set up in APEX.

Figure 2.5: Illustration of a watershed and rules for using the routing mechanism in APEX

Rules for routing:

1. CHL = RCHL

Identifies an extreme (headwaters) area CHL = distance from subarea outlet to most distant point of subarea RCHL = distance of routing reach flow through the subarea. In the case of an extreme subarea, water is not being routed through the subarea,

water is not being routed through the subarea, therefore, no true routing reach has been established at this point. A true routing reach is defined when the water moves from one end of the subarea (point at which water enters the subarea from the upstream subarea) completely through the subarea to the opposite end (outlet) of the subarea.

2. CHL > RCHL

Identifies a downstream subarea (only if subarea were a narrow canyon of 0. width would RCHL = CHL)

3. -WSA

A negative watershed area (WSA) causes stored information to be added (here, 2 is added to 1 before being routed through 3)

In APEX, there are only three variables (CHL, RCHL, and WSA), which need to be specified to determine the routing mechanism of every watershed. To identify extreme areas in a watershed, channel length (CHL) and channel length of routing reach (RCHL) have to be the same (CHL = RCHL). Whenever CHL > RCHL, the model knows that it is a downstream subarea. A negative watershed area (-WSA) indicates that the information of the subarea is added to another subarea(s) before entering the downstream subarea. The routing mechanism of the example in Figure 2.5 is specified as follows:

	WSA	CHL	RCHL
	in ha	in km	in km
Subarea 1 (extreme area)	50	1.25	1.25
Subarea 2 (extreme area)	- 45	1.16	1.16
Subarea 3 (downstream area)	70	1.45	0.85
Subarea 4 (downstream area)	30	0.95	0.55

The *filename.sub* includes the following data elements:

Field	Variable	Description
LINE 1		
1	SNUM	Subarea ID number (cols. 1-8; INTEGER)
2	TITLE	Description of the subarea (cols. 9-28; ALPHA)
LINE 2	FORMAT:	FREE FORMAT; SEE FIGURE 2.6.
1	INPS	Soil number from soil list (SOIL0604.DAT)
2	IOPS	 Operation schedule from operation schedule list (OPSC0604.DAT) Notes: If Cropping System is type Dryland then Irrigation Auto Trigger (BIR) must be 0. If Owner has herds and this is a feedlot subarea then fallow (one crop only) is the only crop that can be used. If feedlot has a lagoon then Irrigation must be a Lagoon Irrigation type.
3	IOW	Owner ID # Must be entered
4	II	Feeding area 0 for non feeding area Herd # for feeding area If the herd is grazing on a pasture, set to 0; otherwise, select the herd which
5	IAPL	will be confined in this area (feedlot area). (Range: 0-10) Note: if II = 0 then Fraction of Subarea controlled by lagoon (DALG) must be 0 Manure application area 0 non manure application area Use the positive subarea ID of the feedlot to indicate solid manure application and the negative subarea ID of the feedlot (lagoon) to indicate liquid manure application. (Range: -10000 to 10000)
Field	Variable	Description

6		Not used
7	NVCN	 CN-CN2 code (Range: 0-4) Variable daily CN nonlinear CN/SW with depth soil water weighting Variable daily CN nonlinear CN/SW without depth weighting Variable daily CN linear CN/SW no depth weighting Non-varying CN – CN2 used for all storms Variable daily CN SMI (soil moisture index)
8	IWTH	Input daily weather station number This is used only if the variable NGN in the control table is greater than 0. Note: you must have .dly(s) to use this option
9	IPTS	Point source number
10	ISAO	 Outflow release method (Range: 0-10000) 0 for Normal reservoir principal spillway release ID of subarea receiving outflow from buried pipe outlet
11	LUNS	Land Use Number This number is from the NRCS land use-hydrologic soil group table. This number will override the LUN set in the Operation (OPSC****.DAT) file. If the LUN has been set for individual tillage operations, then the difference between LUNS and LUN will be added or subtracted accordingly from each of the operations which have a land use number set. For example, if LUNS equals 29 and LUN equals 25, then the land use number set on the individual tillage operations will be increased by 4. (Range: 1-35) See LUN under OPSC****.DAT file section 2.6 to view NRCS land use-hydrologic soil group table.

12 IMW Minimum Interval between Auto Mow

This refers to the minimum length of time (days) set between mowings when the Auto Mow function is used in the operation schedule. The crop will be mowed at this interval given the crop height is greater than the cutting height set on the mower used in the operation. If the IMW variable was set in the Control table, this value will override the Control table value. In order for this variable to be effective, an automatic mower must be in the operation schedule. (Range: 0-365)

LINE 3 *FORMAT*:

10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

1 SNO

Water content of snow on ground at start of simulation (cols. 1-8)

The water content of snow on the ground at the beginning of the simulation is user specified. For long-term simulations used in decision making, SNO is usually not known, but in most cases the estimate is not very critical. If a measured value of SNO is available at the beginning of a simulation, it should be used. Units are mm of water content in the snow (inches in English units). (Range: 0-1000)

2 STDO

Standing dead crop residue (cols. 9-16)

The STD variable allows input of initial, standing dead crop residue in t/ha. STD may be left at 0 if unknown; however, year one will not have standing dead residue prior to crop growth. Only after the first crop cycle will crop residue be present. (Range: 0-1000)

3 YCT

Y Coordinate(Latitude) of subarea centroid (cols. 25-32)

It needs to be entered if dust distribution and air quality is considered in the study. It also needs to be entered if the Spatially Generated Weather option is to be used. Spatially Generated Weather is set by entering 0 for the variable NGN in the control table. Note: A minus degree designates the southern hemisphere. (Range: -90 to 90)

4 XCT

X Coordinate(Longitude) of subarea centroid (cols. 17-24)

It needs to be entered if dust distribution and air quality is considered in the study or if the Spatially Generated Weather option is to be used. Spatially Generated Weather is set by entering 0 for the variable NGN in control table. Note: A minus degree designates western hemisphere. (Range: -180 to 180)

LINE 4 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

Field	Variable	Description
1	WSA	Watershed area (cols. 1-8) Size is in (ha). If this is a second extreme and its flow joins the first extreme area flow but does not flow through the first extreme area a (-) sign is added to the front of the second extreme area WSA making it a negative number. This tells the program to add the second area WSA to the first extreme area when pertaining to water flow.
2	CHL	Distance from outlet to most distant point on watershed (cols. 9-16) The channel length is the distance along the channel from the outlet to the most distant point on the watershed. Often in small areas (approx. 1 ha) there is no defined channel. In such cases the length is measured along a concentrated flow path or it can simply be estimated from the length-width ratio of the watershed. For areas ≤ 20 ha, the channel length measurement is not critical. In such cases, enter 0. Units are kilometers (metric) or miles (English). If this is an EXTREME subarea then Channel Length of Routing Reach MUST EQUAL Distance from Outlet. If this is a DOWNSTREAM subarea then Channel Length of Routing Reach can NOT BE EQUAL to Distance from Outlet.
3	CHD	Channel depth (cols. 17-24) Depth of the channel in meters.
4	CHS	Mainstream channel slope (cols. 25-32) The average channel slope is computed by dividing the difference in elevation between the watershed outlet and the most distant point by CHL. For small areas this measurement is not critical because CHL and CHS are only used in estimating the watershed time of concentration. The dominant portion of the time of concentration is involved with overland rather than channel flow in small watersheds. Slope is expressed as units of drop per unit of distance. (m/m)
5	CHN	Manning's N for channel. (cols. 33-40) If the channel conducting runoff to the edge of the field is winding and/or contains obstructions, water flow rates will be reduced, and sediment will have an opportunity to settle. The channel roughness factor is referred to as the Manning's "n" value. The table contains suggested values of Manning's "n" for various condition channel flow (Chow 1959). Chow has a very extensive list of Manning's roughness coefficients. These values represent only a small potion of those listed in his book.

CHN cont

Table 2.1: Suggested values of Manning's "n" for various condition channel flow (Chow 1959)

Value Chosen	Range	
0.0250	0.016 - 0.033	
0.0350	0.023 - 0.050	
0.0750	0.040 - 0.140	
0.0500	0.025 - 0.065	
0.1000	0.050 - 0.150	
	0.0250 0.0350 0.0750 0.0500	

^{*}If unknown, enter 0.

6 SLP Average Upland Slope (cols. 41-48)

Slope is in m/m. Must be entered.

The average watershed slope can be estimated from field measurement or by using the Grid-Contour Method (Williams and Berndt 1977).

7 SPLG Average Upland Slope Length (cols. 49-56)

Length in m. Must be entered.

The watershed slope length can be estimated by field measurement as described by Wischmeier and Smith (1978) or from topographic maps using the Contour-Extreme Point Method (Williams and Berndt 1977).

This is the distance that sheet flow is the dominant surface runoff flow process. Slope length should be measured to the point that flow begins to concentrate. This length is easily observable after a heavy rain on a fallow field when the rills are well developed. In this situation, the slope length is the distance from the subarea divide to the origin of the rill. This value can also be determined from topographic maps.

Terraces divide the slope of the hill into segments equal to the horizontal terrace interval. With terracing, the slope length is the terrace interval. For broadbase terraces, the horizontal terrace interval is the distance from the center of the ridge to the center of the channel for the terrace below. The horizontal terrace interval for steep backslope terraces is the distance from the point where cultivation begins at the base of the ridge to the base of the frontslope of the terrace below.

Slope length is a parameter that is commonly overestimated. As a rule of thumb, 90 meters (300 ft) is considered to be a very long slope length.

|--|

8 **UPN** Manning's N for Upland (cols. 57-64)

The surface roughness factor is Manning's "n" values. This table contains suggested values and possible ranges of Manning's 'n' for various condition overland flow (Engman 1983).

Table 2.2: Suggested values and possible ranges of Manning's "n" for various condition avarland flaw (Fnamon 1083)

Type of Surface	Value Chosen	Range
Fallow, no residue	0.0100	0.008 - 0.012
Conventional tillage, no residue	0.0900	0.060 - 0.120
Conventional tillage, residue	0.1900	0.160 - 0.220
Chisel plow, no residue	0.0900	0.060 - 0.120
Chisel plow, residue	0.1300	0.100 - 0.160
Fall disking, residue	0.4000	0.300 - 0.500
No till, no residue	0.0700	0.040 - 0.100
No till, with residue $(0.5 - 1.0 \text{ t/ha})$	0.1200	0.070 - 0.170
No till, with residue $(2.0 - 9.0 \text{ t/ha})$	0.3000	0.170 - 0.470
Rangeland (20% cover)	0.6000	
Short grass prairie	0.1500	0.100 - 0.200
Dense grass	0.2400	0.170 - 0.300
Bermudagrass	0.4100	0.300 - 0.480
*If unknown, enter 0.		

9 **FFPQ**

that travels through the filter strip or buffer from the subarea entering the filter strip or buffer. This value should be entered for the buffer/filter strip subarea (Range: 0-1)

10 **URBF** Fraction of Subarea which is Urban (cols. 73-80)

This is the fraction of the subarea which is considered urban. This portion of the subarea will be simulated using an impervious land use and all output for this subarea will be weighted based on this fraction. (Range: 0-1)

LINE 5 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

1 **RCHL** Channel Length of Routing Reach (cols. 1-8)

The length (distance) in km between where channel starts or enters the subarea and leaves the subarea. If this is an EXTREME subarea, then Routing Reach Length MUST EQUAL Longest Distance from Outlet (CHL). If this is a DOWNSTREAM subarea, then Routing Reach Length can not be equal to Longest Distance from Outlet.

Description

2	RCHD	Channel Depth of Routing Reach (cols. 9-16) Depth of the channel for the routing reach in meters.
3	RCBW	Bottom Width of Channel of Routing Reach (cols. 17-24) Width in meters of the bottom of the channel of routing reach.
4	RCTW	Top Width of Channel of Routing Reach (cols. 25-32) Width in meters of the top of the channel of routing reach.
5	RCHS	Channel Slope of Routing Reach (cols. 33-40) Slope of the routing reach channel in m/m. Must be entered.
6	RCHN	Channel Manning's N of Routing Reach (cols. 41-48) The table contains suggested values of Manning's "n" for various condition channel flow (Chow 1959). Chow has a very extensive list of Manning's roughness coefficients. These values represent only a small potion of those listed in his book. Table 2.3: Suggested values of Manning's "n" for various condition

Table 2.3: Suggested values of Manning's "n" for various condition channel flow (Chow 1959).

		Characteristics of Channel	Value Chosen	Range
		A. Excavated or dredged		
		1. Earth, straight and uniform	0.0250	0.016 - 0.033
		2. Earth, winding and sluggish	0.0350	0.023 - 0.050
		3. Not maintained, weeds and brush	0.0750	0.040 - 0.140
		B. Natural Streams		
		1. Few trees, stones or brush	0.0500	0.025 - 0.065
		2. Heavy timber and brush	0.1000	0.050 - 0.150
7	RCHC	USLE Crop Management Channel Factor If set, RCHC will override the RCC0 value channel condition, RCHC should be 0.1-0. land cover, it should have a value of 0.000	in the Control file 6, and if the chanr	nel has very good
8	RCHK	USLE Erodibility Channel Factor (cols. 5 Must be entered. With a rock condition, RG (silt/mud) condition, it should be 0.30.(Ran	CHK should be 0.0	
9	RFPW	Reach Floodplain width (cols. 65-72) (Drainage Area(WSA) X 10000) / (Floodpl	ain length (RFDI)	X 1000) in (m)
Field	Variable	Description	um tengui (tet i E)	71 1000), iii (iii)
		-		

10	RFPL	Buffer/Floodplain length (cols. 73-80) Length of buffer/ floodplain in km.
LINE 6	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)
1	RSEE	Elevation at emergency spillway (meters) (cols. 1-8)
2	RSAE	Total reservoir surface area at emergency spillway elevation (RSEE) in ha. (cols. 9-16)
3	RSVE	Runoff volume from reservoir catchment area at emergency spillway elevation in mm. (cols. 17-24)
4	RSEP	Elevation at principal spillway (meters) (cols. 25-32)
5	RSAP	Total reservoir surface area at principal spillway elevation (RSEP) in ha. (cols. 33-40)
6	RSVP	Volume at principal spillway elevation in mm. (cols. 41-48)
7	RSV	Initial reservoir volumes in mm. (cols. 49-56)
8	RSRR	Average principal spillway release rate in mm/h. (cols. 57-64)
9	RSYS	Initial sediment concentration in reservoirs in ppm (cols. 65-72)
10	RSYN	Normal sediment concentration in reservoirs in ppm. (cols. 73-80)
LINE 7	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING).
1	RSHC	Hydraulic conductivity of reservoir bottoms in mm/h. (cols. 1-8)
2	RSDP	Time for Sediment Concentrations to Return to Normal (cols. 9-16) Time required in days for the sediment in the reservoir to return to the normal concentrations following a runoff event. (Range: 0-365)
3	RSBD	Bulk density of sediment in reservoir (t/m^3) (cols. 17-24)
4	PCOF	Fraction of subarea controlled by ponds (cols. 25-32) Fraction of the subarea which flows through ponds. This affects only the hydrology that originates in this subarea. Inflow from other subareas is not routed through the ponds in this subarea. (Range: 0-1)
Field	Variable	Description

5 BCOF Fraction of the Subarea controlled by Buffers (cols. 33-40)

This is the fraction of the subarea which is controlled by buffer strips. This affects only the hydrology that originates in this subarea. Inflow from other subareas is not routed through the buffer strips in this subarea. This variable should be used when the exact location of the buffer strips is not known. If the exact location is known, the buffer strip should be treated as another subarea. (Range: 0-1)

Assumptions:

1. All buffer strips have grass cover

6 BFFL Buffer Flow Length (m) (cols. 41-48)

The distance the flow must travel through the buffer strips. This is the cumulative flow length if several separate buffers are located in succession within the subarea. This variable should be set if BCOF is greater than 0.

LINE 8 FORMAT: TWENTY (20) FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER)

1 NIRR *Rigidity of Irrigation Code (cols. 1-4)* (Range: 0-1)

- 0 For flexible (variable) applications. Applies minimum of soil water field capcity (FC-SW) and maximum single irrigation application volume (ARMX).
- 1 For rigid (fixed) applications. Applies input amount or ARMX. The irrigation code is used to specify the irrigation strategy. There are two modes of irrigating -- manual and automatic. The following details how the model handles the combination of rigid and flexible applications and manual and automatic irrigation.
 - 1. Fixed/Rigid

If MANUAL irrigation is used, irrigation is applied according to the amounts and dates specified by the user in the operation schedule. If AUTOMATIC irrigation is used, the amount applied per application is equal to the maximum single application amount (ARMX) which is set for each subarea, and irrigation is applied when the irrigation trigger (BIR) is reached. In all cases the EFI is removed through runoff prior to infiltration into the soil. If the amount of irrigation is greater than the amount of water needed to bring the soil to field capacity, the model will run off the fraction (EFI), fill the profile to field capacity and the remaining water will be percolated through the soil. This may cause leaching of nutrients, however. Soluble nutrients are leached through the soil or removed with runoff.

2. Variable/Flexible

If MANUAL irrigation is used, irrigation is applied on the date specified in the operation schedule in a volume equal to the minimum of the specified volume, maximum single application volume, or the volume required to fill the root zone to field capacity calculated as ((Field capacity – storage)/(1 – EFI)). EFI will be taken into account

T 1 1 1	F7 • 11	T 11
Field '	Variable	Description
1,16,101	variame	176801111111111

NIRR cont.

regardless of the option chosen. If AUTOMATIC irrigation is used, irrigation is applied based on the irrigation trigger (BIR) and according to the minimum (ARMN) and maximum (ARMX) single irrigation application rates as well as maximum annual irrigation amount (VIMX) and the irrigation interval (IRI) set for each subarea. In all cases the EFI is removed through runoff prior to infiltration into the soil and is calculated as ((Field capacity – storage)/ (1 – EFI)).

1 IRR *Irrigation Code (cols. 1-4)* (Range: 0-5)

- 0 for dryland
- 1 for sprinkler irrigation
- 2 for furrow/flood irrigation
- 3 for fertigation
- 4 for lagoon
- 5 for drip irrigation

The irrigation code is used to specify whether irrigation is used and the type of irrigation.

- If furrow/flood irrigation is specified, irrigation induced erosion is calculated.
- If fertigation is specified, IDFT identifies the type of fertilizer and FNP identifies the amount of fertilizer for each irrigation.
- If lagoon is specified, the concentration in tons of soils per m³ of effluent is specified by FNP and the nutrient fraction by creating a fertilizer in the Fert0604.DAT file with the appropriate nutrients and selecting it with IDFT.

NOTE: NIRR and IRR are entered as one number. For example, a rigid drip irrigation regime would be entered as 15.

2 IRI

Minimum application interval for automatic irrigation (cols. 5-8)

This sets the number of days between automatic irrigation events. Irrigation will not occur until the minimum number of days has been met regardless if the BIR has already been met. If IRR = 0, then set IRI to 0. IRI will also affect manual irrigation. If manual irrigations are applied at a daily interval less than set in IRI, then manual irrigations will only be applied at the interval set in IRI. (Range: 0-365)

3 IFA

Minimum fertilizer application interval for auto option (cols. 9-12)

This sets the number of days between automatic fertilization events. Fertilization will not occur until the minimum number of days has been met regardless if the BFT has already been met. (Range: 0-365)

Field	Variable	Description
-------	----------	-------------

4 LM *Liming Code* (cols. 13-16) (Range: 0-1)

APEX enables the user to simulate application of agricultural limestone to increase soil pH and/or reduce soil aluminum saturation. For many soils and applications of APEX, this feature is not needed; therefore, it can be turned off by setting LM to 1.

Long term simulations with noncalcareous soils and either nitrogen fertilizer or nitrogen-fixing legumes often require liming to prevent acidification of the soil and reduction of crop growth.

0 Lime applied automatically as needed to prevent acidification of the soil1 No lime applied.

5 IFD Furrow Dike Code (cols. 17-20)

Furrow dikes (or tied ridges) are small dams constructed, usually by tillage equipment, in the furrows. They are designed to impede runoff and promote infiltration of rainfall and/or sprinkler irrigation. APEX simulates the construction, function, and destruction of furrow dikes. The furrow dike code IFD is used to determine whether dikes are simulated. (Range: 0-1)

- 0 Furrow dike system not simulated
- 1 Furrow dike system simulated

6 IDR Drainage code (cols. 21-24)

Artificial drainage systems (tiles, perforated pipes, open ditch drains, etc.) are often installed to remove excess water from fields. (Range: 0-2500)

- 0 No drainage
- >0 Enter depth to drainage system in mm.

7 IDF1 Fertigation Fertilizer from Lagoon. (cols. 25-28)

Fertilizer identification number for fertigation or automatic fertilization from lagoon.

Enter 0 for no fertigation or automatic fertilization from a lagoon. To apply fertigation from a lagoon put in the number of fertilizer from lists provided (FERT0604.DAT). If no number is set, the model defaults to fertilizer #69. It is wise to set this number even if there are no current plans to use this function so that the selected fertilizer number matches the correct number in the fertilizer list which is being used.

Field	Variable	Description
-------	----------	-------------

IDF1 cont NOTES

1. MNUL in Control File MUST BE SET.

If no lagoon is present or turned on, then this function will not take effect even if a fertilizer number is set.

8 IDF2 Automatic Solid Manure Application from Feeding Area Stock Pile. (cols. 29-32)

Fertilizer identification number for automatic fertilization using solid manure from the feeding area stock pile.

Enter 0 for no automatic fertilization using solid manure. To automatically apply solid manure from the feeding area stock pile put in the number of the fertilizer from lists provided (FERT0604.DAT). If no number is set, the model defaults to fertilizer #68. It is wise to set this number even if there are no current plans to use this function so that the selected fertilizer number matches the correct number in the fertilizer list which is being used.

NOTES

- 1. FNP2 in subarea file MUST BE SET
- 2. MNUL in Control File MUST BE SET
- 9 IDF3 *NOT USED* (cols. 33-36)

10 IDF4 Automatic Commercial Fertilizer Application. (cols. 37-40)

Enter number of fertilizer from lists provided (FERT0604.DAT). If none is entered model defaults to Elemental N. If no number is set, the model defaults to fertilizer #52. It is wise to set this number even if there are no current plans to use this function so that the selected fertilizer number matches the correct number in the fertilizer list which is being used.

NOTES

1. BFT, FNP4 and IFA in subarea file MUST BE SET.

11 IDF5 Automatic Solid Manure Application (cols. 41-44)

To automatically apply solid manure (can come from an external source) enter the fertilizer number from the lists provided (FERT0604.DAT). If no number is set, the model defaults to fertilizer #68. It is wise to set this number even if there are no current plans to use this function so that the selected fertilizer number matches the correct number in the fertilizer list which is being used.

NOTES

- 1. FNP5 and IFA from the subarea file MUST BE SET.
- 2. MNUL in the control table MUST BE SET.

LINE 9 FORMAT: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

Field	Variable	Description
1	BIR	Water stress factor to trigger automatic irrigation. (cols. 1-8) To trigger automatic irrigation, the water stress factor is set: 0 manual irrigation 0 - 1.0 Plant water stress factor. (1 - BIR) equals the fraction of plant water stress allowed 1.0 Does not allow water stress < 0.0 Plant available water deficit in root zone (number is in mm and must be negative) > 1.0 Soil water tension in top 200mm (Absolute number is in kilopascals) -1000 Sets water deficit high enough that only manual irrigations will occur. Effectively turns auto irrigation off.
		NOTES 1. When BIR is set and used with a cropping system that includes more than one crop in rotation, the BIR will apply to all crops in the rotation. When using a BIR based on anything other than plant water stress (0-1), be aware that irrigation will be applied outside of the growing season if the soil water deficit or soil water tension reaches BIR. This will reduce the amount of water available for irrigation during the growing season.
2	EFI	Runoff Vol/Vol Irrigation Water Applied. (cols. 9-16) The irrigation runoff ratio specifies the fraction of each irrigation application that is lost to runoff. Soluble nutrient loss through runoff applies. Changes in soil slope do not affect this amount dynamically. EFI must be set accordingly. (Range: 0-1)
3	VIMX	Maximum annual irrigation volume (cols. 17-24) This is the maximum irrigation volume allowed each year in mm. If several crops are grown in one year, the first crop's needs will be supplied as needed and any remaining water will be applied as needed to the next crop. If all of the water allocated by VIMX is used on the first crop, the second crop will not receive any irrigation. This also applies to manual irrigation. Once the amount of irrigation applied equals VIMX, then no additional irrigation will be applied, regardless if it's manually or automatically applied.
4	ARMN	Minimum single application volume (cols. 25-32) This is the minimum amount of irrigation allowed for each auto irrigation application in mm.
Field	Variable	Description

5 ARMX Maximum single application volume (cols. 33-40)

This is the maximum amount of irrigation allowed for each auto irrigation application in mm. This is the amount applied if rigid automatic irrigation is selected.

6 BFT N stress factor to trigger auto fertilization. (cols. 41-48)

The automatic fertilizer trigger functions much like BIR for irrigation. When the plant nitrogen stress level reaches BFT, nitrogen fertilizer may be applied automatically.

If this value is greater than 0, IDFT must be the Number of the Fertilizer application.

- 0.00 For manual fertilizer
- 0 1 Allows percentage of plant nitrogen stress (1 BFT) equals the fraction of N stress allowed.
- 1.00 No N stress, auto-fertilization when needed.
- >1 If BFT is greater than 1, BFT is the PPM(g/t) N in soil at which automatic fertilizer is triggered

7 FNP4 Auto Fertilization Application Rate (N) (cols. 49-56)

Variable rate of automatic commercial application (amount of fertilizer applied as needed to lower N stress); fixed rate of automatic commercial application (set amount of fertilizer applied each time N stress is reached). The units for this parameter are in kg.

NOTES

- 1. BFT (Auto Fertilizer Trigger) must be set
- 2. IDF0 (Auto Fertilizer Type) must be set to 4
- 3. IDF4 (Automatic commercial Fertilizer Application) can not be 0 for this variable to work.

8 FMX Maximum annual N fertilizer applied (cols. 57-64)

Maximum amount of nitrogen fertilizer available for application per year in kg/ha. If more than one crop is grown per year, nitrogen will be applied to the first crop as specified. Nitrogen fertilizer will be applied to successive crops up to the maximum annual value. After the annual value has been met, no additional fertilizer will be applied. This variable can be overridden in the operation schedule where it can be set per crop. Refer to section 2.6 for further information on setting the maximum annual amount per crop.

NOTE

If this variable is set either in the subarea file or in the operation schedule and manual fertilization is applied, the model will only apply up this maximum amount regardless of the amount specified in the manual fertilization operation.

Field Variable Description

9 DRT

Time requirement for drainage system to end plant stress in days. (cols. 65-72)

Artificial drainage systems may be very efficient and quickly reduce water tables or it may take several days for the water level to decline sufficiently to eliminate aeration stress. The variable DRT is used to specify the time needed for the drainage system to eliminate stress. In this case time is measured in days. If drainage is not considered, enter 0. (Range: 0-365)

10 FDSF

Furrow Dike Safety Factor (cols. 73-80)

Fraction of furrow dike volume available for water storage. FDSF controls the volume of water that can be stored in the dike before water tops over the dike. This variable is used to account for uncertainty in the volume of the furrow dike. The volume is calculated from the height of the row, row interval (width of row), length of dike and height of dike. If these values are not very certain, it may be wise to set FDSF to a low number which indicates that the certainty of dike design in not very high. This will cause the dikes to overflow much quicker, however, which will affect runoff and erosion. If the certainty of design of the dike is great, FDSF can be set to 0.9 or higher, which will lessen dike overflow as well as runoff and erosion. (Range: 0-1)

LINE 10 *FORMAT*:

10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

1 PEC

Erosion control practice factor. (cols. 1-8)

The erosion-control-practice factor normally ranges from about 0.1 to 0.9 depending upon the effectiveness of the conservation practice. Default = 1.0 for non-contoured fields. However, PEC can be set to 0.0 to eliminate water erosion entirely. When this is done, the soil profile remains relatively static because it is reset to initial conditions at the end of each year. This feature is very convenient for a given soil profile. At the other extreme, (PEC=10.) erosion rates are increased 10 times to improve log-term simulation efficiency. This feature is a big time saver in estimating water erosion effects on soil properties over periods of up to 1000 years. Obviously, the 1000-year period can be approximated with a 100-year simulation using PEC=10. (Range: 0-10)

Table 2.4: P values and slope length limits for contouring.

Land Slope(%)	P value	Maximum length (feet)	
1 to 2	0.60	400	
3 to 4	0.50	300	
6 to 8	0.50	200	
9 to 12	0.60	120	
13 to 16	0.70	80	
17 to 20	0.80	60	
21 to 25	0.90	50	

Proper setting of the PEC value will improve the simulated erosion amount

Field Variable Description

PE	C cont	NOTE

1. Maximum length may be increased by 25% if residue cover after crop seeding will regularly exceed 50%.

2 DALG Fraction of Subarea controlled by lagoon. (cols. 9-16)

This is only needed when IRR = 4 (Range: 0-1)

3 VLGN Lagoon Volume Ratio (cols. 17-24)

Normal Lagoon Volume as a fraction of Maximum Lagoon Volume. (Normal Lagoon Volume/Maximum lagoon volume) (fraction). (Range: 0-1) Needed only when IRR = 4.

NOTE

1. If Fraction of Subarea controlled by lagoon (DALG) = 0 then VLGN must = 0

4 COWW Lagoon Input From Wash Water (cols. 25-32)

Needed only when IRR = 4 and owner has at least one head of livestock. (Average normal value is 0.15) (Range: 0-1)

NOTE

- 1. If Fraction of Subarea controlled by lagoon (DALG) = 0 then COWW must = $0 \text{ (m}^3/\text{animal unit/day)}$.
- 5 DDLG *Time to Reduce Lagoon Storage From Maximum to Normal* (cols. 33-40) Needed only when IRR = 4. (Range: 0-365)

NOTE

- 1. If Fraction of Subarea controlled by lagoon (DALG) = 0 then DDLG must = 0 (days).
- 6 SOLQ Ratio Liquid/Total Manure Applied in this Feedlot Subarea. (cols. 41-48)
 Fraction of total manure produced that goes into a lagoon as liquid. Needed only when IRR = 4 (Range: 0-1)

NOTE

1. If Fraction of Subarea controlled by lagoon (DALG) = 0 then SOLQ must = 0

Field	Variable	Description

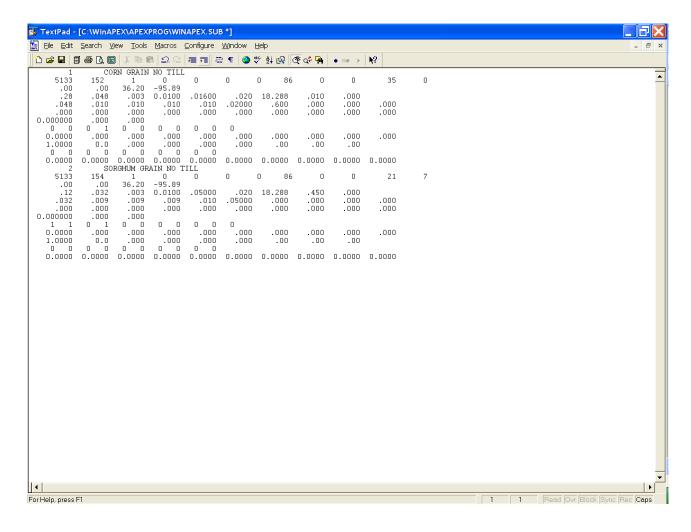
Safety factor for lagoon design (cols. 49-56) This number is expressed as a fraction. It is needed only when IRR = 4. VLG = VLGO/(1-SFLG) where VLG equals the lagoon volume and VLG0 is the initial lagoon volume. (Range: 0-1) 8 FNP2 Feeding Area Stock Pile Auto Solid Manure Application Rate (cols. 57-64) Used in solid waste area when a feedlot has been assigned to IAPL and IDF2 > 0. (kg/ha) 9 FNP5 Automatic Manure application rate (cols. 65-72) Activated only if IDF5 > 0. This function allows manure to be applied as needed in kg/ha. The manure applied can come from an external source. LINE 11 FORMAT: TWENTY (20) FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER) 1 NY(1)Herd(s) Eligible for Grazing this Crop (cols. 1-4) Select none (0) if no herd is used in this Subarea or select herd number(s) (NCOW from site file) eligible to feed in area. If herd is selected, set the grazing lower limit (GZLM in control table or XTP in subarea file.) in the pasture area. (Range: 0-10) NOTE 1. NY must be set in order for a herd to be eligible to graze this crop. 2. Management budget must have a Start Graze operation for this Crop in order for grazing to be initiated. If owner has no herds (from Owner table) then NY and XTP field can not be set 3. If Min Fraction of Day (FFED) is set to 1 (in site file) the herd will not show up in select list. 10 NY(10) Herd(s) Eligible for Grazing this Crop (cols. 37-40) Select none (0) if no herd is used in this Subarea or select herd number(s) (NCOW from site file) eligible to feed in area. If herd is selected, set the grazing lower limit of feed (GZLM) in the pasture area. (Range: 0-10) **LINE 12** *FORMAT:* 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING) 1 XTP (1) Grazing limit for each herd (cols. 1-8) This is the minimum amount of plant material (t/ha) that must be present for grazing to occur. When herd grazes down to this limit, grazing is stopped and herd is placed on supplementary feed. If XTP is not set in the subarea file, the grazing limit (GZLM) in the control table will be used.

7

10

XTP(10)

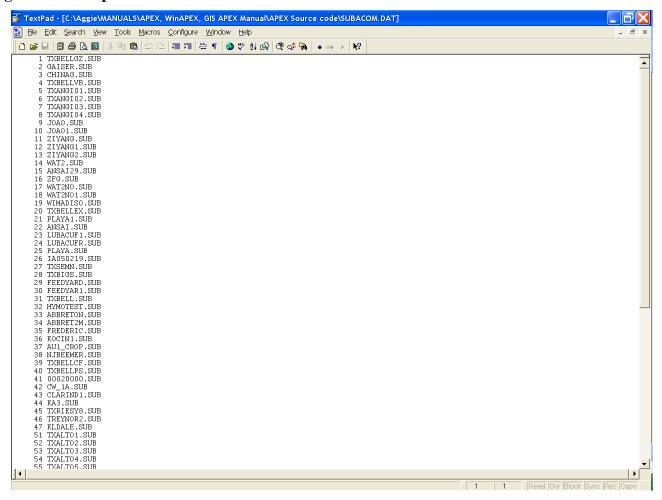
SFLG


This is the minimum amount of plant material (t/ha) that must be present for grazing to occur. When herd grazes down to this limit, grazing is stopped

Grazing limit for each herd (cols. 73-80)

and herd is placed on supplementary feed.

LINE 1 THROUGH 12 ARE REPEATED FOR EACH SUBAREA IN THE WATERSHED.


Figure 2.6: Sample Subarea (*.SUB) file screen.

2.6 APEX SUBAREA LIST FILE (SUBA****.DAT)

The APEX Subarea list file is a listing of all subarea files which have been previously created following the format described in section 2.5 and are available for use in creating runs. The Subarea list consists of a numbered listing of all subarea files which can be referenced by number in the APEXRUN.DAT file. The file is in FREE FORMAT. See Figure 2.7 for an example of the SUBACOM.DAT file. The Subarea list file name may be user defined; however, it must be properly identified in the APEXFILE.DAT file

Figure 2.7. Sample SUBACOM.DAT file

HOW TO BUILD APEX0604 *.SUB FILE

Two methods have been developed for constructing the APEX *.sub file. One is a manual method and the other is by utilizing a SWAT model interface method. The manual method is recommended for beginners who are interested in learning variable parameters and how to run APEX. The manual approach shows the detail on how to create each variable included in the *.sub file manually. A merit of this method is that it can stand alone with no need to learn the SWAT interface or GIS procedures involved with SWAT. Furthermore, the digitized GIS data files like DEM are not required in this method, but it is essential in using the SWAT interface.

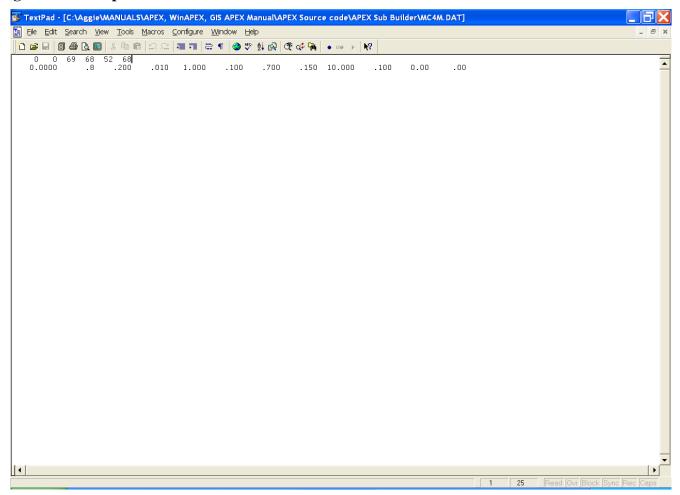
However, for those who know watershed delineation procedures by using the SWAT interface and have all the related accessible GIS data for the watershed area, the SWAT interface method is highly recommended because this approach can facilitate the accuracy for each subarea configuration in the watershed. The two methods are described below.

THE MANUAL APPROACH:

User Guide for building the **APSUBLDM.FOR**

The program builds a subarea file for use in running APEX. All inputs are entered manually. The output *.SUB file contains data for all the subareas in the watershed complete with routing instructions ready for input to APEX.

Input files:


1. APSUBRUN.DAT

This file contains a list of watershed names scheduled for building *.SUB files (example WSNAME.DAT or other user-chosen file name). The program will build *.SUB files for all names on the list and stop when it encounters a blank line. Each line indicates one individual watershed name from which a *.SUB file needs to be generated. If one needs to create several *.SUB files at once, each watershed name should be listed here one by one.

Figure 2.8: Sample APSUBRUN.DAT file screen

Figure 2.9: Sample WSNAME.DAT file screen

2. WSNAME.DAT

This file is prepared manually. The variable definitions and formats follow.

LINE 1

READ(KR1,33)IRI,IFA,IDF1,IDF2,IDF4,IDF5 33 FORMAT (6I4)

- (1) IRI = MINIMUM INTERVAL FOR IRRIGATION SCHEDULE(D)
- (2) IFA = MINIMUM INTERVAL FOR AUTO FERT(D)
- (3) IDF1 = FERT # LIQUID
- (4) IDF2 = FERT # STOCK PILE SOLID
- (5) IDF4 = FERT # COMMERCIAL
- (6) IDF5 = FERT # AUTO SOLID

LINE 2

READ(KR1,34)BIR,BFT,CHC,CHK,PEC,DALG,VLGN,COWW,DDLG,SOLQ,FNP2,FNP5 34 FORMAT(11F8.3)

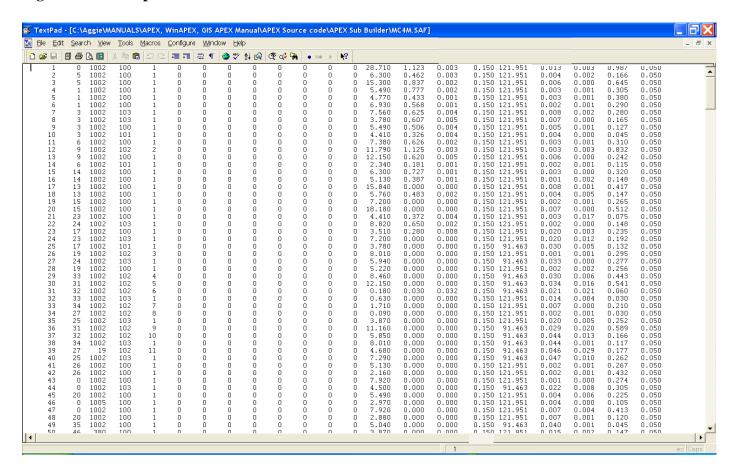
- (1) BIR = AUTO IRR TRIGGER
- (2) BFT = AUTO FERT TRIGGER
- (3) CHC = CHANNEL C FACTOR
- (4) CHK = CHANNEL K FACTOR
- (5) PEC = EROSION CONTROL PRACTICE FACTOR
- (6) DALG = FRACTION OF SUBAREA CONTROLLED BY LAGOON
- (7) VLGN = LAGOON VOLUME RATIO--NORMAL/MAX
- (8) COWW = LAGOON INPUT FROM WASH WATER(M^3/COW/D)
- (9) DDLG = TIME TO REDUCE LAGOON STORAGE FROM MAX TO NORM(D)
- (10) SOLQ = RATIO LIQUID/TOTAL MANURE PRODUCED
- (11) FNP2 = FEEDING AREA STOCK PILE AUTO SOLID MANURE APPL RATE (KG/HA)
- (12) FNP5 = AUTOMATIC MANURE APPLICATION RATE (KG/HA)

The above values are used in all subareas. Once the* .SUB is completed, the values can be changed manually in any of the subareas if necessary to describe actual conditions. An example usually requiring changes is a subarea composed of a filter strip.

3. WSNAME.SAF

This file contains the identification numbers of the entering and receiving subareas. All subareas flow into (or enter) another subarea or out of the watershed. Those that flow out of the watershed have a receiving number of 0. However, only some of the subareas are receiving areas. For example, subareas along the watershed divide are called extreme areas because they are on the extremes of the watershed and thus receive no flow from other areas. Each subarea occupies one line in this file. All of the variables beyond the entering and receiving identification numbers are associated with the entering subarea.

The variable definitions and format follow:


LINE 1

READ(KR2,*,END=8)IE(I),IO(I),ISOL(I),IOP(I),IOW(I),IFED(I),IAPL(I) 1,IFLS(I),NVCN(I),IWTH(I),IPTS(I),IRR(I),LM(I),WSA(I),CHL(I),CHS(I) 2,UPN(I),SLG(I),SLP(I),RCHS(I),RCHL(I),RCHN(I)

- * FORMAT indicates FREE FORMAT.
 - (1) IE = ENTERING SUBAREA #
 - (2) IO = RECIEVING SUBAREA #
 - (3) ISOL = SOIL NUMBER FROM SOIL1310.DAT
 - (4) IOP = OPSC # FROM OPSC1310.DAT
 - (5) IOW = OWNER #
 - (6) IFED = 0 FOR NON FEEDING AREAS
 - = HERD # FOR FEEDING AREAS

- (7) IAPL = 0 FOR NON MANURE APPL AREAS
 - = FEED AREA ID # FOR LIQUID MANURE APPL AREAS
 - FEED AREA ID # FOR SOLID MANURE APPL AREAS
- (8) IFLS = 0 FOR NORMAL SUBAREA
 - > 0 FOR FILTER STRIPS
- (9) NVCN = 0 VARIABLE DAILY CN NONLINEAR CN/SW WITH DEPTH SOIL WATER WEIGHTING
 - = 1 VARIABLE DAILY CN NONLINEAR CN/SW NO DEPTH WEIGHTING
 - = 2 VARIABLE DAILY CN LINEAR CN/SW NO DEPTH WEIGHTING
 - = 3 NON-VARYING CN--CN2 USED FOR ALL STORMS
 - = 4 VARIABLE DAILY CN SMI(SOIL MOISTURE INDEX)
- (10) IWTH = INPUT DAILY WEATHER STATION NUMBER
- (11) IPTS = POINT SOURCE NUMBER
- (12)IRR = 0 DRYLAND
 - = 1 SPRINKLER
 - = 2 FURROW
 - = 3 FERTIGATION
 - = 4 LAGOON IRR
- (13) LM = 0 APPLIES LIME AS NEEDED; >0 NO LIME APPLIED
- (14) WSA = DRAINAGE AREA(HA)
- (15) CHL = LENGTH FROM MOST DISTANT PT ON SUBAREA BOUNDARY TO OUTLET (KM)
- (16) CHS = SUBAREA CHANNEL SLOPE(M/M)
- (17) UPN = UPLAND MANNINGS N
- (18) SLG = UPLAND SLOPE LENGTH(M)
- (19) SLP = AVE UPLAND SLOPE(M/M)
- (20) RCHS = REACH CHANNEL SLOPE(M/M)
- (21) RCHL = ROUTING REACH CHANNEL LENGTH(KM)
- (22) RCHN = REACH CHANNEL N

Figure 2.10: Sample WSNAME.SAF file screen

2.7 THE SOIL FILES (FILENAME.SOL)

Data for each soil is maintained in a separate soil file, filename.sol. In SOIL0604.DAT (or user chosen name), each soil has to be listed, which correspond with the variable *INPS* in the subarea file. The list of soils can be edited with the "UTIL SOILLIST" command.

The *filename.sol* includes the following data elements:

TWENTY (20) ALPHA CHARACTERS LINE 1 FORMAT: General description line for soil type.

LINE 2 *FORMAT*: 10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

		DECIMAL PLACES (FLOATING)
Field	Variable	Description
1	SALB	Soil albedo. (cols.1-8) (Range: 0-1) The ratio of the amount of solar radiation reflected by the soil to the amount incident upon it, often expressed as a fraction. The value for albedo should be reported when the soil is at or near field capacity.
2	HSG	Soil hydrologic group (1=A, 2=B, 3=C, or 4=D). (cols. 9-16) (Range: 1-4)
		The U.S. Natural Resource Conservation Service (NRCS) classifies soils into four hydrologic groups based on infiltration characteristics of the soils. NRCS Soil Survey Staff (1996) defines a hydrologic group as a group of soils having similar runoff potential under similar storm and cover conditions. Soil properties that influence runoff potential are those that impact the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to seasonally high water table, saturated hydraulic conductivity, and depth to a very slowly permeable layer. The definitions for the different classes are:
		A Soils having high infiltration rates even when thoroughly wetted, consisting chiefly of sands or gravel that are deep and well to

- excessively drained. These soils have a high rate of water transmission (low runoff potential).
- Soils having moderate infiltration rates when thoroughly wetted, chiefly В moderately deep to deep, moderately well to well drained, with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
- Soils having slow infiltration rates when thoroughly wetted, chiefly with \mathbf{C} a layer that impedes the downward movement of water or of moderately fine to fine texture and a slow infiltration rate. These soils have a slow rate of water transmission (high runoff potential).
- Soils having very slow infiltration rates when thoroughly wetted, chiefly D

Field Variable Description

HSG cont.

clay soils with a high swelling potential; soils with a high permanent water table; soils with a clay pan or clay layer at or near the surface; and shallow soils over nearly impervious materials. These soils have a very slow rate of water transmission.

Guidelines used by USDA Soil Survey to categorize soils into Hydrologic Groups are summarized in Table 2.5

Table 2.5: Hydrologic Group Rating Criteria

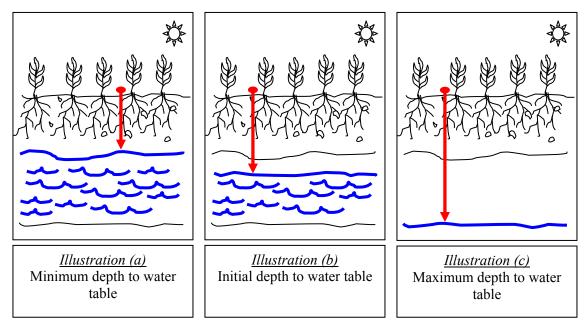
Hydrologic Soil Groups		ps		
Criteria [*]	A	В	C	D
Final constant infiltration rate (mm/hr)	7.6-11.4	3.8-7.6	1.3-3.8	0-1.3
Mean permeability: surface layer (mm/hr)	> 254.0	84.0-254.0	8.4-84.0	< 8.4
Mean permeability: most restrictive layer below the surface layer to a depth of 1.0 m (mm/hr)	> 254.0	84.0-254.0	8.4-84.0	< 8.4
Shrink-swell potential: most restrictive layer**	Low	Low	Moderate	High, Very High
Depth to bedrock or cemented pan (mm)	> 1016	> 508	> 508	< 508
DUAL HYDROLOGIC GROUPS	A/D	B/D	C/D	
Mean depth to water table (m)	< 0.61	< 0.61	< 0.61	

^{*} These criteria are guidelines only. They are based on the theory that the minimum permeability occurs within the uppermost 50 cm. If the minimum permeability occurs between a depth of 50 to 100 cm, then the Hydrologic Soil Group is increased one group. For example, C to B. If the minimum permeability occurs below a depth of 100 cm, the Hydrologic Soil Group is based on the permeability above 100 cm, using the rules previously given.

FFC Initial Soil Water Content (cols. 17-24) (Range: 0-1)
Initial soil water content as a fraction of field capacity. Set at 0 if unknown.

^{**} Shrink-swell potential is assigned to a profile using the following guidelines:

<u>Low</u>: All soils with sand, loamy sand, sandy loam, loam or silt loam horizons that are at least 50 cm thick from the surface without a clay horizon within 100 cm of the surface.


Medium: All soils with clay loam horizons within 50 cm of the surface or soils with clay horizons from 50 to 100 cm beneath the surface.

<u>High</u>: All soils with clay horizons within 50 cm of the surface. Lower the shrink-swell potential one class when kaolinite clay is dominant.

Field	Variable	Description
Ticiu	variable	Description
4	WTMN	Minimum depth to water table (cols. 25-32) (Range: 0-100) This is the depth (m) from the soil surface to the water table when the water table is at its highest level. See Figure 2.11 (a). NOTE
		 If this depth is greater than 6 feet (1.8 meters), its affect on the model results are minimal. With the depth set at zero, the model automatically sets the depth deep enough to remove any affects. Set to 0 if unknown. Fluctuation in the water table is a function of rainfall and ET. If the ratio of the 30-day antecedent rainfall minus the 30-day antecedent PET to the 30-day antecedent PET is less than 0, the water table drops. If the ratio is greater than 0, the water table rises.
5	WTMX	<i>Maximum depth to water table (cols. 33-40)</i> (Range: 0-100) This is the depth (m) from the soil surface to the water table when the water table is at its lowest level. Set to 0 if unknown. See Figure 2.11 (c).
6	WTBL	Initial water table height (cols. 41-48) (Range: 0-100) This is the depth (m) from the soil surface to the current water level at which the model will begin simulating. Throughout the simulation the water level will fluctuate up and down. See Figure 2.11 (b).
		NOTE 1. This depth must be less than or equal to the Minimum depth to the water table (WTMN) and greater than or equal to the Maximum depth to the water table (WTMX).

The last three parameters are very important when the field contains a water table that is very near the surface. Default settings assume the water table is deep enough not to affect plant growth; however, if the water table is within several feet of the surface, it can provide an extra supply of water that ordinarily would not be accounted for in the model.

Figure 2.11: Illustrations of depth to water table.

Field	Variable	Description
7	GWST	Groundwater storage (cols. 49-56) (Range: 0-200) The amount of groundwater storage (mm) available in mm at the beginning of the simulation. Set to 0 if unknown.
9	GWM	<i>Maximum groundwater storage (cols. 57-64)</i> (Range: 10-500) The maximum amount of groundwater storage available in mm Set to 0 if unknown.
9	RFTO	Groundwater residence time in days (cols. 65-72) (Range: 1-365) Set to 0 if unknown.
10	RFPK	Return flow/(return flow + deep percolation) (cols. 73-80) (Range: 0.01-0.99) (Blank if unknown).

Field	Variable	Description
LINE 3	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)
1	TSLA	Maximum number of soil layers after splitting (cols. 1-8) (Range: 3-10) This sets the maximum number of soils layers that the model will simulate after the original soil profile has been split. Splitting the original soil layers into shallower layers enables for more accurate movement of water, nutrients and roots from one layer to the next. When plant roots penetrate a layer the model assumes they have full access to the entire pool of nutrients and water in that layer. If the layer is thick, this in essence provides the plants access to a greater pool of nutrients and water than they would actually have available to them. The maximum number of soil layers (TSLA) may range from 3 to 10. If TSLA is not inputted, the model automatically uses 10 layers. If less than TSLA layers are inputted, the model splits layers to obtain the proper number. Layers are split in half from the soil surface downward. Initially the model splits layers with thicknesses greater than ZTK. Setting the value to 0 causes no splitting to initially occur. Refer to ZQT, ZF and ZTK for further information.
2	XIDS	 Soil weathering code. (cols. 9-16) (Range: 0-4) The soil weathering factor is used to provide information for estimating the phosphorus sorption ratio. If no weathering information is available or if the soil contains CaCO₃, XIDS is left at 0. Calcareous and non-calcareous soils without weathering information. Non CaCO₃ slightly weathered. Non CaCO₃ moderately weathered. Non CaCO₃ highly weathered. Input Phosphorus sorption ratio (PSP) or active + stable mineral P (kg/ha).
3	RTN1	Number of Years of Cultivation at Start of Simulation (cols. 17-24) (Range: 0-300) This parameter affects the partitioning of nitrogen and carbon into the passive and slow humus pools. The number of years of cultivation before the simulation starts is used to estimate the fraction of the organic N pool that is mineralizable. Mineralization is more rapid from soil recently in sod. Also increasing the number of years the field has been in cultivation increases the amount of C and N in the passive pool. This means it will take longer for the carbon and nitrogen to become available.
4	XIDK	 Soil Grouping (cols. 25-32) (Range: 1-3) 1 Kaolinitic soil group. 2 Mixed soil group. 3 Smectitic soil group.

Field	Variable	Description		
5	ZQT	Minimum Thickness of Maximum Layer (cols. 33-40) (Range: 0.01-0.25) The model splits the first layer with thickness greater than ZQT (user specified minimum thickness (meters) for splitting). As soil layers are eroded and lost from the system, layer splitting continues until the number of layers equals TSLA. This splitting scheme produces thinner layers near the soil surface throughout the simulation period. Since most activity (tillage, root growth, microbial activity, rainfall/runoff interaction, etc.) occurs relatively near the soil surface, concentrating computational effort in that zone by using thin layers is very desirable. When the thickest soil layer reaches ZQT, no further splitting occurs. Instead, the number of soil layers is reduced until only two layers remain. At that time, the simulation stops. The simulation will also stop if the user-specified, minimum soil-profile thickness (ZF) is reached. If ZQT and ZF are not inputted, the model sets both of them to 0.1 m. Refer to TSLA, ZF and ZTK for further information.		
6	ZF	<i>Minimum profile thickness (cols. 41-48)</i> (Range: 0.05-0.25) This is the minimum thickness of the profile that is allowed. If the profile is eroded to this thickness, the simulation will stop. If ZF is not inputted, the model sets it to 0.1 m. Refer to TSLA, ZQT, and ZTK for further information.		
7	ZTK	Minimum layer thickness for beginning simulation layer. (cols. 49-56) (Range: 0.05-0.25) The model splits the first layer with thickness greater than ZTK (m); if none exists the thickest layer is split. This is only done once to make certain there are no extremely thick layers even at lower depths. Refer to TSLA, ZQT and ZF for further information.		
8	FBM	<i>Fraction of Org C in biomass Pool</i> (<i>cols.</i> 57-64) (Range: 0.03 – 0.05)		
9	FHP	Fraction of Org C in passive Pool (cols. 65-72) (Range: 0.3 – 0.7)		
10	XCC	Code written automatically by .SOT (NOT USER INPUTTED) (cols. 73-80)		
From LINE 4 onward, one column of data per soil layer (up to 10 layers)				
	FORMAT:	10 FIELDS; EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)		
LINE 4	Z	Depth to bottom of layer (Range: 0.01-10) Depth from the soil surface to the bottom of the layer (m)		
LINE 5	BD	Moist Bulk Density (Range: 0.5-2.5)		
		(Mg/m³ or g/cm³). The soil bulk density expresses the ratio of the mass of solid particles to the		

BD cont.

total volume of the soil, $\rho_b = M_S/V_T$. In moist bulk density determinations, the mass of the soil is the oven dry weight and the total volume of the soil is determined when the soil is at or near field capacity. Bulk density values should fall between 1.1 and 1.9 Mg/m³.

LINE 6 UW

Soil water content at wilting point (Range: 0.01-.5)

Soil water content at 1500 KPa or -15 bars (m/m) (blank if unknown).

LINE 7 FC

Soil Water Content at field capacity (Range: 0.1-0.6)

Soil water content at 33 KPa or -1/3 bars (m/m) (blank if unknown).

LINE 8 SAN

Sand Content (Range: 1-99)

Percentage of sand in the soil, expressed as a fraction. The percentage of soil particles which have a diameter between 2.0 and 0.05 mm.

LINE 9 SIL

Silt Content (Range: 1-99)

Percentage of silt in the soil, expressed as a fraction. The percentage of soil particles which have an equivalent diameter between 0.05 and 0.002 mm.

LINE 10 WN

Initial organic N Concentration (Range: 100-5000)

Users may define the concentration of organic nitrogen (dry weight basis) contained in humic substances for all soil layers at the beginning of the simulation. If the user does not specify initial nitrogen concentrations, APEX will initialize levels of organic nitrogen. (g N/Mg or ppm) (blank if unknown).

LINE 11 PH

Soil pH. (Range: 3-9)

The pH of a solution in equilibrium with soil. It is determined by means of a glass, quinhydrone, or other suitable electrode or indicator at a specified soil-solution ratio in a specified solution, usually distilled water, 0.01 M CaCl₂ or 1 M KCl.

LINE 12 SMB

Sum of Bases (Range: 0-150)

The sum of bases (Ca++, K+, etc.) on the cation exchange complex. (cmol/kg) (Blank if unknown).

LINE 13 WOC

Organic carbon concentration (%).(Range: 0.1-10)

LINE 14 CAC

Calcium carbonate content of soil (%) (Range: 0-99)

A compound, CaCO3 is found in nature as calcite and argonite and in plant ashes, bones, and shells. CaCO3 is found in calcareous soils. It is also used as a liming agent to increase the pH of a soil (Blank if unknown).

LINE 15 CEC *Cation exchange capacity* (Range: 0-150)

The cation exchange capacity of a soil is the quantify of positive ions necessary to neutralize the negative charge of a unit quantity of soil, under a given set of conditions. (cmol/kg) (Blank if unknown).

LINE 16 ROK *Coarse fragment content* (Range: 0-99)

The percent of the sample which has a particle diameter > 2 mm, i.e. the percent of the sample which does not pass through a 2 mm sieve. Expressed as a fraction. (Blank if unknown).

LINE 17 CNDS *Initial soluble N concentration* (Range: 0.01-500)

Users may define the concentration of nitrate (dry weight basis) for all soil layers at the beginning of the simulation. (g/Mg) (Blank if unknown).

LINE 18 SSF *Initial soluble P concentration* (Range: 0.01-500)

Users may define the concentration of solution P (dry weight basis) for all soil layers at the beginning of the simulation. (g/Mg) (Blank if unknown).

LINE 19 RSD *Crop residue* (Range: 0-20)

The amount of biomass left in/on the soil from previous crops. (t/ha), (Blank if unknown).

LINE 20 BDD Dry Bulk density (oven dry) (Range: 0.5-2.0)

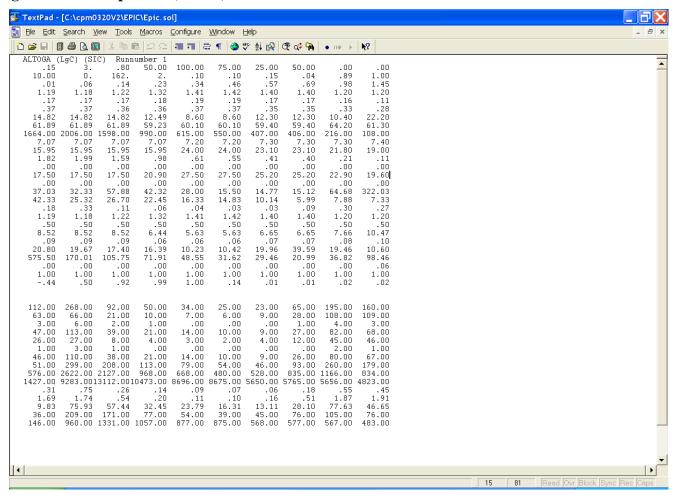
Density of the soil after oven drying (t/m^3) .

LINE 21 PSP *Phosphorus sorption ratio.* (Range: 0-0.9)

The fraction of phosphorus adsorbed on soil particle surfaces. This may be left at 0.0 if unknown. The model will calculate this ratio. The soil weathering code XIDS must be set to 4.0 to input these values.

LINE 22 SATC Saturated conductivity (Range: 0.00001-100)

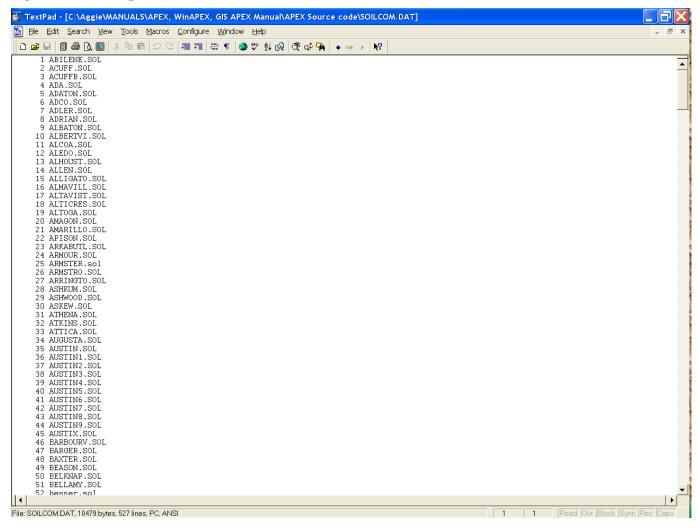
Rate at which water passes through the soil layer, when saturated. The saturated hydraulic conductivity relates soil water flow rate (flux density) to the hydraulic gradient and is a measure of the ease of water movement through the soil. The saturated conductivity is the reciprocal of the resistance of the soil matrix to water flow. (mm/h).


LINE 23 HCL Lateral hydraulic conductivity (Range: 0.00001-10)

(mm/h), (blank if unknown).

LINE 24	WPO	<i>Initial organic P concentration</i> (Range: 50-1000) Users may define the concentration of organic phosphorus (dry weight basis) contained in humic substances for all soil layers at the beginning of the simulation. (g/t), (blank if unknown).
LINE 25	EXCK	Exchangeable K Concentration (Range: 0-200) The amount of potassium on the surface of soil particles that can be readily replaced with a salt solution. (g/t)
LINE 26	ECND	<i>Electrical Conductivity</i> (Range: 0-50) Conductivity of electricity through water or an extract of soil. Commonly used to estimate the soluble salt content in solution. (mmho/cm)
LINE 27	STFR	Fraction of Storage Interacting With Nitrate Leaching (Range: 0.05-1)
LINE 28	ST	<i>Initial Soil Water Storage</i> (Range: 0.001-1) Fraction of field capacity initially available at the start of the simulation.
LINE 29	CPRV	<i>Fraction inflow partitioned to vertical crack or pipe flow</i> (Range: 0-0.5) (blank if unknown).
LINE 30	CPRH	Fraction inflow partitioned to horizontal crack or pipe flow (Range: 0-0.5) (blank if unknown).
LINE 31	WLS	Structural litter (Range: 0-10000) One of the two litter components that contains all the lignin from plant residues and roots. The structural litter component has a fixed C/N ratio. (kg/ha)
LINE 32	WLM	<i>Metabolic litter</i> (Range: 0-10000) One of the two litter components made up of readily decomposable and water soluble organic matter. (kg/ha)
LINE 33	WLSL	<i>Lignin Content of Structural Litter</i> (Range: 0-10000) Lignin is a complex polymer that binds to cellulose fibers and gives strength to the cell walls of plants. It is very resistant to decomposition. (kg/ha)
LINE 34	WLSC	Carbon Content of Structural Litter (Range: 0-10000) Carbon makes up almost half of the elemental composition of the dry matter in plants and is a common constituent of all organic matter. It is also present in the atmosphere in the form of CO ₂ . See WLS for more information. (kg/ha)
LINE 35	WLMC	Carbon Content of Metabolic Litter (Range: 0-10000) See WLSC and WLM for more explanation (kg/ha)

LINE 36	WLSLC	Carbon Content of Lignin of Structural Litter (Range: 0-10000) See WLSC, WLSL and WLS for more explanation (kg/ha)
LINE 37	WLSLNC	Nitrogen Content of Lignin of Structural Litter (Range: 0-10000) The amount of nitrogen found in the lignin portion of the structural litter. See WLSL and WLS for more information. (kg/ha)
LINE 38	WBMC	Carbon Content of Biomass (Range: 0-10000) The carbon content of the living plant matter. (kg/ha)
LINE 39	WHSC	Carbon Content Slow Humus (Range: 0-10000) Slow humus is a conceptual component of soil organic matter that decomposes at rates intermediate between the microbial and passive humus components. (kg/ha)
LINE 40	WHPC	Carbon Content of Passive Humus (Range: 0-10000) Passive humus is a conceptual component composed of old or stable soil organic matter. (kg/ha)
LINE 41	WLSN	Nitrogen Content of Structural Litter (Range: 0-10000) See WLS for more information. (kg/ha)
LINE 42	WLMN	Nitrogen Content of Metabolic Litter (Range: 0-10000) See WLM for more information. (kg/ha)
LINE 43	WBMN	Nitrogen Content of Biomass (Range: 0-10000) The nitrogen content of the living plant matter.(kg/ha)
LINE 44	WHSN	Nitrogen Content of Slow Humus (Range: 0-10000) See WHSC for more information. (kg/ha)
LINE 45	WHPN	Nitrogen Content of Passive Humus (Range: 0-10000) See WHPC for more information. (kg/ha)


Figure 2.12: Sample Soil (*.SOL) file screen.

2.8 THE APEX SOIL LIST FILE (SOIL****.DAT)

The APEX Soil list file is a listing of all soil files which have been previously created following the format previously described in section 2.7 and are available for creating runs. The Soil list consists of a numbered listing of all soil files which can be referenced by number in the APEX Subarea file. This file is in FREE FORMAT. See Figure 2.13 for an example of the SOILCOM.DAT file. The Soil list file name may be user defined; however, it must be properly identified in the APEXFILE.DAT file

Figure 2.13. Sample SOILCOM.DAT file.

2.9 THE OPERATION SCHEDULE FILES (FILENAME.OPS)

The field operations file, typically named *filename.ops* has the following configuration (note that opv1 to opv7 variables are context specific, i.e., different meanings, and variable names, depending on type of operation row). The *filename.ops* files must be listed in OPSC0604.DAT (or user specified name).

Field	Variable	Description
LINE 1:		Description FORMAT: TWENTY (20) ALPHA CHARACTERS
LINE 2:	FORMAT:	TWENTY (20) FIELDS; FOUR (4) COLUMNS PER FIELD (INTEGER)
1	LUN	Land use number from NRCS Land Use-Hydrologic Soil Group Table (cols. 1-4) (Range: 1-35) Refer to the column labeled Land User Number in the table below. This number along with the hydrologic soil group is used to determine the curve number.

Table 2.6: Runoff curve numbers for hydrologic soil-cover complexes

	Cover	Hydrologic	Hyd	rologic	soil gro	oup	Land Use
Land use	Treatment or practice	condition	A	В	С	D	Number
Fallow	Straight row		77	86	91	94	1
Row crops	Straight row	Poor	72	81	88	91	2
-	" "	Good	67	78	85	89	3
	Contoured	Poor	70	79	84	88	4
	" "	Good	65	75	82	86	5
	Contoured & terraced	Poor	66	74	80	82	6
	" "	Good	62	71	78	81	7
Small grain	Straight row	Poor	65	76	84	88	8
_	" "	Good	63	75	83	87	9
	Contoured	Poor	63	74	82	85	10
	" "	Good	61	73	81	84	11
	Contoured & terraced	Poor	61	72	79	82	12
	" "	Good	59	70	78	81	13

Close-seeded	Straight row	Poor	66	77	85	89	14
legumes ¹ or	" "	Good	58	72	81	85	15
rotation meadow	Contoured	Poor	64	75	83	85	16
	" "	Good	55	69	78	83	17
	Contoured & terraced	Poor	63	73	80	83	18
	" "	Good	51	67	76	80	19
Pasture or range		Poor	68	79	86	89	20
C		Fair	49	69	79	84	21
		Good	39	61	74	80	22
	Contoured	Poor	47	67	81	88	23
	" "	Fair	25	59	75	83	24
	11 11	Good	6	35	70	79	25
Meadow		Good	30	58	71	78	26
Woods		Poor	45	66	77	83	27
		Fair	36	60	73	79	28
		Good	25	55	70	77	29
Farmsteads			59	74	82	86	30
Roads (dirt) ²			72	82	87	89	31
(hard surface) ²			74	84	90	92	32
Sugarcane			39	61	74	80	33
Impervious (Pave	ement, urban area)		98	98	98	98	35

Taken from the National Engineering Handbook (U.S. Department of Agriculture, Soil Conservation

Close-drilled or broadcast.
 Including right of way.
 Service 1972).

	ation numbers	es are optional; however, it is wise to set them because it is possible that the s will not match exactly with the TILL.DAT file being used causing unexpected
2	IAUI	Auto Irrigation # (cols. 5-8) (Range: $1-\infty$) If auto irrigation is used, this irrigation operation (found in the TILLCOM.DAT file) will be used to apply irrigation water. If none is specified, the default is operation #500.
3	IAUF	Auto Commercial Fertilizer # (cols. 9-12) (Range: 1-∞) If auto commercial fertilizer is used, this fertilizer operation (found in the TILLCOM.DAT file) will be used to apply commercial inorganic fertilizer. If none is specified, the default is operation #261.
4	IAMF	Auto Manure Deposition by Animals # (cols. 13-16) (Range: $1-\infty$) If manure is to be automatically deposited by animals to a field or feedlot, this operation (found in the TILLCOM.DAT file) will be used to apply manure. If none is specified, the default is operation #268.
5	ISPF	Auto Solid Manure Application # (cols. 17-20) (Range: $1-\infty$) If auto solid manure is used, this operation (found in the TILLCOM.DAT file) will be used to apply solid manure either from a stock pile or from another location. If none is specified, the default is operation #266.
6	ILQF	Auto Liquid Manure Application # (cols. 21-24) (Range: $1-\infty$) If auto liquid manure is used, this operation (found in the TILLCOM.DAT file) will be used to apply liquid manure from a lagoon. If none is specified, the default is operation #265.
7	IAUL	Auto Lime Application # (cols. 25-28) (Range: 1-∞) If auto lime is used, this operation (found in the TILLCOM.DAT file) will be used to apply lime automatically. If none is specified, the default is operation #267.

Field

Variable

Description

Field	Variabl	e Description
LINES 3 - N:	FORMAT:	THREE (3) FIELDS WITH TWO (2) COLUMNS PER FIELD (INTEGER) FOLLOWED BY FOUR (4) FIELDS WITH FIVE (5) COLUMNS PER FIELD (INTEGER) FOLLOWED BY SEVEN (7) FIELDS WITH EIGHT (8) COLUMNS INCLUDING DECIMAL PLACES (FLOATING)
(one line)	per operation):	
1	JX (1)	 Year of operation. (cols. 1-2) (Range: 1-100) Refers to the year the operation occurs. 1 = operation occurs in 1st year of cropping system 2 = operation occurs in 2nd year of cropping system : Nth year
2	JX (2)	Month of operation. (cols. 3-4) (Range: 1-12) The month the operation occurs in (1-12).
3	JX (3)	Day of operation (cols. 5-6) (Range: 1-31) Day of the month the operation occurs.
4	JX (4)	Tillage ID Number (cols.7-11) (Range: $1-\infty$) Refers to the ID number that is given to each tillage operation or piece of equipment. (from TILL0604.DAT)
5	JX (5)	Tractor ID (cols. 12-16) (Range: $1-\infty$) Refers to the ID number given to each tractor in the TILL0604.DAT file.
6	JX (6)	<i>Crop ID number</i> (cols. 17-21) (Range: $1-\infty$) Refers to the crop ID number given to each crop as listed in CROP0604.DAT.

THE FOLLOWING VARIABLES WILL VARY IN THE TYPE OF DATA VALUES DEPENDING ON THE TYPE OF OPERATION IT IS PERTAINING TO.

	ON THE TITE OF O	'I LIN	ATTOM TO LATITUDE TO.
7	JX (7)	1	XMTU - Time from planting to maturity (Y), (for tree crops at planting only). This refers to the time to complete maturity of the tree (full life of the tree). No potential heat units are entered for trees. This value is calculated from XMTU. <i>(cols. 22-26)</i> (Range: 5-300)
		2	LYR - Time from planting to harvest in years, if JX(4) is harvest operation for trees (portion of full maturity) (<i>cols. 22-26</i>) (Range: 5-100)
		3	Pesticide ID number from PEST0604.DAT, (for pesticide application only) (<i>cols.</i> 22-26) (Range: $1-\infty$)
		4	Fertilizer ID number from FERT0604.DAT (for fertilizer application only) (cols. 22-26) (Range: $1-\infty$)

Field	Variable	Description
8	OPV1	1 Potential heat Units (PHU) for planting. Total number of heat units or growing degree days needed to bring the plant to maturity. Used in determining the growth curve. (cols. 27-34) (Range: 1-5000)
		For trees, no PHU are entered. They are calculated from XMTU. For crops other than trees PHU are accumulated annually and reset to 0 at the end of the year. Trees are a special case in which PHUs continue to accumulate from year to year. Deciduous trees are also a special case within trees in which PHUs are calculated annually (similar to non-tree crops) in order to simulate leaf drop as well as accumulate PHUs from year to year to simulate the maturity of the tree.
		 On a Start Grazing operation this variable is used to set the stocking rate in number of animals/hectare. Using this feature, the user can change the number of animals in the herd at any point in time simulating buying/selling of animals. Application volume in mm for irrigation. (cols. 27-34) (Range: 1-5000) Fertilizer application rate in kg/ha. For variable rate set equal to 0.
		 (cols. 27-34) (Range: 0-500) Pest Control factor for Pest application (fraction of pests controlled). This factor is used to control pest populations by applying pesticides. It only applies to insects and diseases. Weeds are handled through intercropping. (cols. 27-34) (Range: 0-1) If this factor is set to 0.99, 99% of the pests will be killed. After each treatment, the population will begin to regrow based on several parameters set in the Control file (PSTX), Crop file (PST) and Parm file (parm 9 and 10). Currently the model is set so that very minimal damage is caused by pests and therefore does not reduce yield. Pest growth is dependant on temperature and humidity. Warm and wet conditions favor pest growth while dry and cool conditions inhibit pest growth.
9	OPV2	1 Condition SCS Runoff Curve number, or Land Use number (optional). The land use number set previously can be overridden at this point if an operation has caused the land condition to change. (cols. 35-42) (Range: 1-35)
		 Pesticide application rate in kg/ha. (cols. 35-42) (Range: 0-500) Application depth (mm) for fertilizer. (cols. 35-42) (Range: 1-500)

Field	Variable	Description
10	OPV3	Automatic Irrigation Trigger (cols. 43-50) (Range: -1000 to 1000) This is the same irrigation trigger function as in the subarea file. The subarea file value can be overridden by setting the trigger value in the operation schedule. To trigger automatic irrigation, the water stress factor is set: 0 manual irrigation or model uses BIR set in subarea file 0 – 1.0 Plant water stress factor. (1 – BIR) equals the fraction of plant water stress allowed 1.0 Does not allow water stress < 0.0 Plant available water deficit in root zone (number is in mm and must be negative) > 1.0 Soil water tension in top 200mm (Absolute number is in kilopascals) -1000 Sets water deficit high enough that only manual irrigations will occur. Effectively turns auto irrigation off.
		When using a BIR based on anything other than plant water stress (0-1), be aware that irrigation will be applied outside of the growing season if the soil water deficit or soil water tension reaches BIR. This will reduce the amount of water available for irrigation during the growing season. 1. Once the trigger has been set within a operation schedule, it will remain in effect until changed within the operation schedule. If the schedule is used in rotation with other schedules, the trigger will stay as set even into the next schedule. When setting the irrigation trigger within an operation schedule, it is wise to set the irrigation trigger to -1000 mm at the end of the schedule so that when the operation schedule is used in rotation with another non-automatically irrigated crop, the second crop is not influenced by the irrigation trigger.
11	OPV4	Runoff vol/vol irrigation water applied. (cols. 51-58) (Range: 0-1) Setting the runoff fraction (EFI) within the operation schedule overrides the EFI set within the subarea file. The irrigation runoff ratio specifies the fraction of each irrigation application that is lost to runoff. Soluble nutrient loss through runoff applies. Changes in soil slope do not affect this amount dynamically. EFI must be set accordingly. (Range: 0-1)
12	OPV5	Plant population (cols. 59-66) (Range: 0-500) (plants/m² or plants/ha if plants/m² < 1.; e.g. trees), (for planting only). APEX does not simulate tillering. In crops such as wheat and sugarcane which produce higher numbers of yielding tillers compared to the number of seeds or shoots planted, the plant population must be estimated based on the final yield producing tiller number.

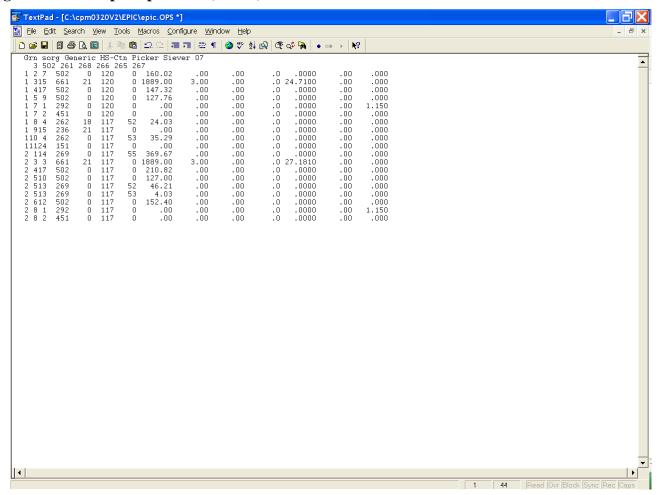
Field	Variable	Description
13	OPV6	Maximum annual N fertilizer applied to a crop (cols. 67-74) (Range: 0 - 1000) (0 or blank does not change FMX; >0 sets new FMS (for planting only). In the subarea file FMX was set which set a limit on the amount of fertilizer that could be applied on an annual basis regardless of the number of crops grown within a year. Refer to FMX in section 2.4 for further information. The maximum annual amount of nitrogen fertilizer can also be set here in the operation schedule and can be set per crop so that each crop has a specified amount of nitrogen fertilizer available to it. This is especially important when automatically applying fertilizer.
		NOTE 1. If this variable is set either in the subarea file or in the operation schedule and manual fertilization is applied, the model will only apply up this maximum amount regardless of the amount specified in the manual fertilization operation.
14	OPV7	<i>Time of operation as fraction of growing season (cols. 75-82)</i> (Range: 0-1.5) This is also referred to as heat unit scheduling. Heat unit scheduling can be used to schedule operations at a particular stage of growth. For example, irrigation could be scheduled at 0.25, 0.5, and 0.75 which might represent varying stages of crop growth. Irrigation would then be applied at 25%, 50%, and 75% of the potential heat units set at planting.
		When setting up an operation using heat unit scheduling it is best to enter earliest possible Month and day ($JX(2) \& JX(3)$) that the operation could occur on because in order for the operation to occur the date of the operation as well as the number of heat units scheduled must be met. This is especially true for harvest operations. It is recommended that the harvest date be set 10-14 days before actual harvest is expected to occur. This is recommended so that the date of the operation will be met before the heat units are met. If the date is set too late and the heat units are met before the date of the operation is met, the crop will continue to grow longer than expected which can affect yield.
		Within APEX the following process is followed: first the program checks to see

that the date of the operation has been met; then it checks to see if the fraction of heat units has been met. See the table below for further explanation.

Table 2.7: Occurrence of operation based on date/heat unit.

1. Date	2. Heat units	Action
Date is met	Heat unit fraction	Operation will not occur until heat units have been
	has not been met	met
Date is not met	Heat unit fraction is met	Operation will occur as soon as date is met. Note: excess GDUs will accumulate causing the operation to occur later in the growing cycle than expected
Date is met	Heat unit fraction is met	Operation will occur immediately

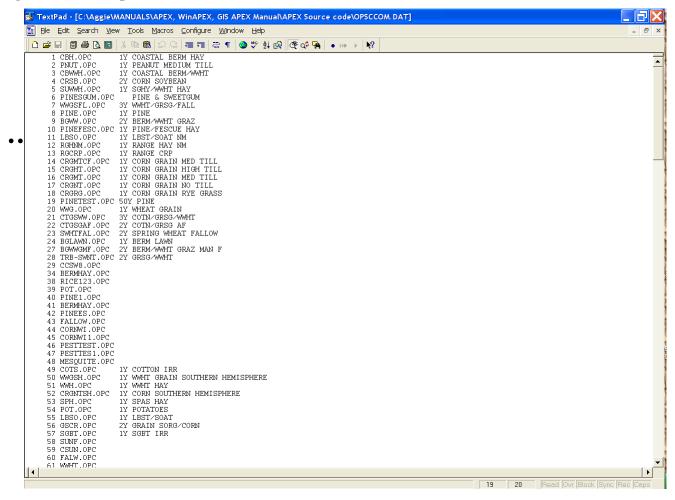
Heat unit scheduling can also be used to adjust operations to the weather (temperatures) from year to year.


If heat units are not scheduled (set to 0), operations will occur on the date as scheduled in the operation schedule. The will occur on the same date every year the crop is grown.

Heat unit scheduling operations which occur from planting to harvest are based on the heat units set at planting. Operations which occur before planting are based on the total annual heat units which are calculated by the model.

For some grain crops an in-field dry-down period is allowed. It is expressed as a fraction of the total heat units set at planting. In most cases the dry-down period is 10% to 15% of the total heat units. If a dry-down period is required, heat unit schedule the harvest operation to occur at 1.10, 1.15 or another appropriate fraction.

In the case of forage harvesting, the forage is actually harvested well before the crop reaches full maturity. In this case heat unit schedule the forage harvest to 0.55 or another appropriate fraction.


Figure 2.14: Sample Operation (*.OPS) file screen.

2.10 APEX OPERATION SCHEDULE LIST FILE (OPSC****.DATA

The APEX Operation Schedule list file is a listing of all operation schedule files which have been previously created following the format previously described in section 2.9 and are available for creating runs. The Operation Schedule list consists of a numbered listing of all operation schedule files along with a brief description of the type of operation schedule (crop and number of years) which can be referenced by number in the APEX Subarea file. This file is in FREE FORMAT. See Figure 2.15 for an example of the OPSCCOM.DAT file. The Operation Schedule list file name may be user defined; however, it must be properly identified in the APEXFILE.DAT file

Figure 2.15. Sample OPSCCOM.DAT file.

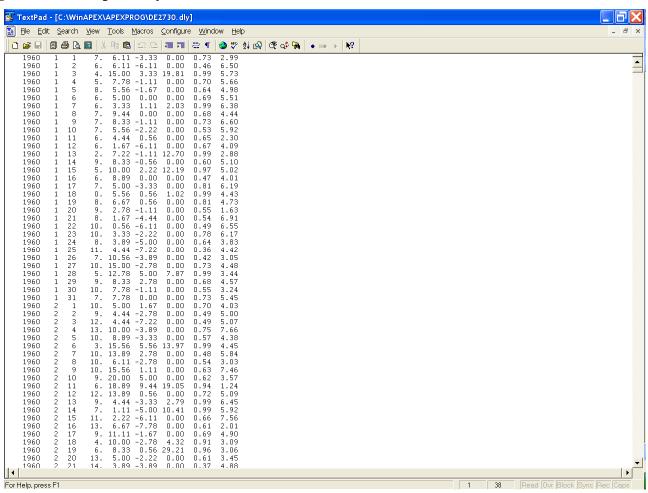
2.11 DAILY WEATHER FILES (FILENAME.DLY)

Historical daily weather data can be used in two ways: First, it can be directly used in APEX simulation when the length of historical daily weather is the same as the simulation period. Second, in general the historical daily weather data is primarily used to generate monthly weather data, which then is used to generate APEX weather input data.

FORMAT: TWO (2) BLANK SPACES FOLLOWED BY THREE (3) FIELDS OF FOUR (4) COLUMNS (INTEGER) FOLLOWED BY SIX (6) FIELDS OF SIX (6) COLUMNS INCLUDING DECIMAL PLACES (FLOATING)

Variable	Description
YEAR	Year must be in 4-digit format and is REQUIRED data (cols. 3-6)
MONTH	Month is REQUIRED data (cols. 7-10)
DAY	Day is REQUIRED data (cols. 11-14)
SRAD	Solar radiation must be in MJ/m² but is NOT REQUIRED data. If data is not available, leave a blank field. (cols. 15-20)
TMAX	Maximum temperature must be in oC and is REQUIRED data. (cols. 21-26)
TMIN	Minimum temperature must be in oC and is REQUIRED data. (cols. 27-32)
PRCP	Precipitation must be in mm and is REQUIRED data. (cols. 33-38)
RH	Relative humidity must be in fraction format and is NOT REQUIRED data. If data is not available, leave a blank field. (cols. 39-44)
WSPD	Wind speed must be in m/s and is NOT REQUIRED data. If data is not available, leave a blank field. (cols. 45-50)

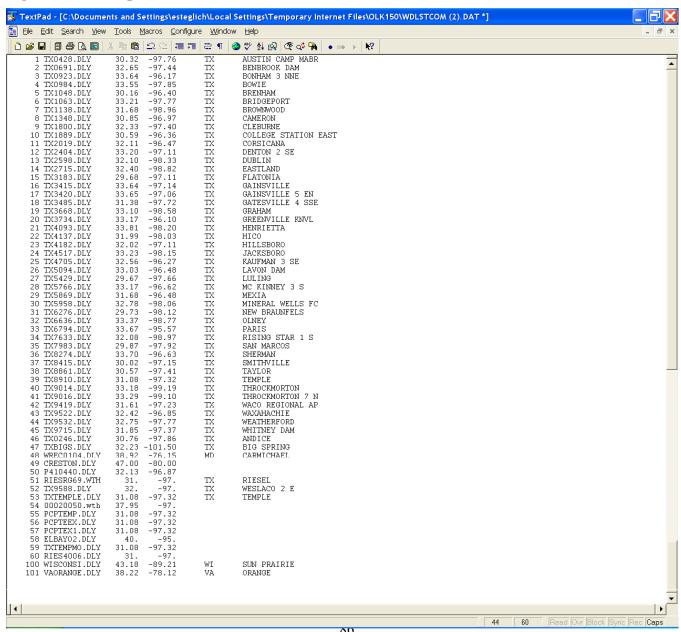
After completing the following steps to develop the WPM1MO.DAT file, if any daily record of max. temp., min. temp., or precipitation are missing, enter 9999.0 in the missing field(s) of the record(s). APEX will generate the missing record automatically when using measured weather in a simulation. NOTE: DO NOT USE 9999.0 FOR ANY RECORD BEFORE DEVELOPING THE WPM1MO.DAT BELOW.


Format of Daily Weather Input Files

The easiest way to build a historical daily weather input file is to enter the data in an Excel spreadsheet and then save it as a tab delimited *.txt file. The APEX weather program (WXPM3020.exe) will read this *.txt file to create the generated weather file (.wp1).

Run APEX Weather Program

Put the historical daily weather input file under the weather program directory. Before starting to run the weather generating program (WXPM3020.exe), one needs to set up WXPMRUN.DAT file. This can be done by putting the actual daily weather file name (*.dly) on the first line in WXPMRUN.DAT file if only one weather data set needs to be generated. In the event of several weather data sets need to be generated by WXPM3020.exe, each individual actual daily weather data set name has to be listed in WXPMRUN.DAT file. By doing so, the WXPM3020.exe will read all the daily weather files listed in WXPMRUN.DAT and generate all the monthly weather files. When WXPMRUN.DAT is set up, one can execute the weather generation program by typing WXPM3020 under the appropriate driver path prompt where both actual daily weather and weather generating program are stored. Then press ENTER key. The weather program will start to run until it is finished. When it is finished, it produces three files: *.DLY (an actual daily weather file), *.OUT, and *.INP files. In which only *.INP file is needed for APEX simulation. To be consistent, this *.INP file should be renamed as *.WP1. The *.WP1 file will be listed in the weather list file (WPM10604.DAT). For the content of *.WP1 file, please refer to the next section of WPM1MO.DAT.


Figure 2.16. Sample Daily weather file

2.12 THE DAILY WEATHER LIST FILE (WDLST****.DAT)

This is is a listing of daily weather stations as well as the corresponding latitude, longitude and weather station location name. The model references this file to determine which weather station (*.DLY) will be used for daily weather. When NGN in the APEXCONT.DAT file is equal to 1, 2, 3, 4, 5 or some combination of these, this indicates that daily weather is to be used. If a daily weather station is not indicated in the APEXRUN.DAT file, then the program references XCT and YCT in the subarea file to determine the latitude and longitude of the subarea centroid which it then uses to find a weather station in the WDLSTCOM.DAT file with the closest latitude and longitude. If XCT and YCT are not identified in the SUBAREA file, the program then references YLAT and XLOG in the SITE file to determine the latitude and longitude of the watershed which it then uses to find a weather station in the WDLSTCOM.DAT file with the closest latitude and longitude.

Figure 2.17: Sample list of weather stations found in the WDLSTCOM.DAT file

2.13 THE MONTHLY WEATHER FILES (FILENAME.WP1)

Monthly weather statistics of a single weather station are maintained in filename.wp1. The files must be listed in WPM1MO.DAT (or user chosen name). The model references the WPM1MO.DAT file to determine which weather station (*.wp1) will be used for monthly weather. When NGN in the APEXCONT.DAT file is equal to 0 or -1, this indicates that monthly weather is to be used to generate all weather variables. Monthly weather is also used to generate weather when no daily weather data is available. If a monthly weather station is not indicated in the APEXRUN.DAT file, then the program references XCT and YCT in the subarea file to determine the latitude and longitude of the subarea centroid which it then uses to find a weather station in the WPM1MO.DAT file with the closest latitude and longitude. If XCT and YCT are not identified in the SUBAREA file, the program then references YLAT and XLOG in the SITE file to determine the latitude and longitude of the watershed which it then uses to find a weather station in the WPM1MO.DAT file with the closest latitude and longitude.

LINE 1: TITLE Description line. FORMAT: TWENTY (20) ALPHA CHARACTERS

LINE 2: TITLE Description line. FORMAT: TWENTY (20) ALPHA CHARACTERS

LINES 3-15 FORMAT: TWELVE (12) FIELDS OF SIX (6) COLUMNS INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

FILENAME.WP1 FILE (LINES 3 TO 15 EACH HAVE 12 FIELDS, ONE FOR EACH MONTH, JANUARY – DECEMBER):

LINE 3: OBMX	Average monthly	maximum air temi	perature (deg C)
--------------	-----------------	------------------	------------------

LINE 4: OBMN Average monthly minimum air temperature (deg C)

LINE 5: SDTMX *Monthly average standard deviation of daily maximum temperature (deg C)*

LINE 6: SDTMN *Monthly average standard deviation of daily minimum temperature (deg C)*

LINE 7: RMO Average monthly precipitation (mm)

LINE 8: RST2 Monthly standard deviation of daily precipitation (mm).

- May be left zero if daily rainfall is input
- May be left zero if unknown (enter zero).
- **LINE 9:** RST3 *Monthly skew coefficient for daily precipitation)*
 - May be left zero if daily rainfall is input
 - May be left zero if unknown (enter zero).

LINE 10: PRW1 Monthly probability of wet day after dry day

- May be left zero if unknown and average number of days of rain per month (WVL) is available
- May be left zero if daily rainfall is input.

LINE 11: PRW2 Monthly probability of wet day after wet day

- May be left zero if unknown and average number of days of rain per month (WVL) is available.
- May be left zero if daily rainfall is input.

LINE 12: DAYP Average number days of rain per month (days).

 May be left zero if rainfall is generated and wet/dry probabilities are available.

LINE 13: WI Monthly max 0.5h rainfall (mm).

3 options are available:

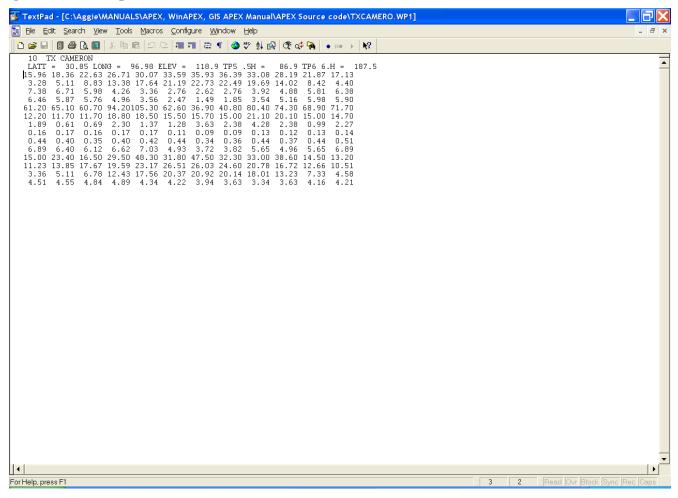
- Monthly maximum .5 hour rainfall (mm) for period in YWI.
- Alpha (Mean .5 hour rain/mean storm amount).
- Blanks or zeros if unknown.

LINE 14: OBSL Average monthly solar radiation (MJ/M**2 or LY (Langley))

Special note if you intend to use daily weather files 3 options are available:

- Entering MJ/M**2 here indicates you will be reading MJ/m².
- Entering LY here indicates you will be reading LY. $MJ/m^2 = LY \times 0.0419$
- May be left zero if unknown.

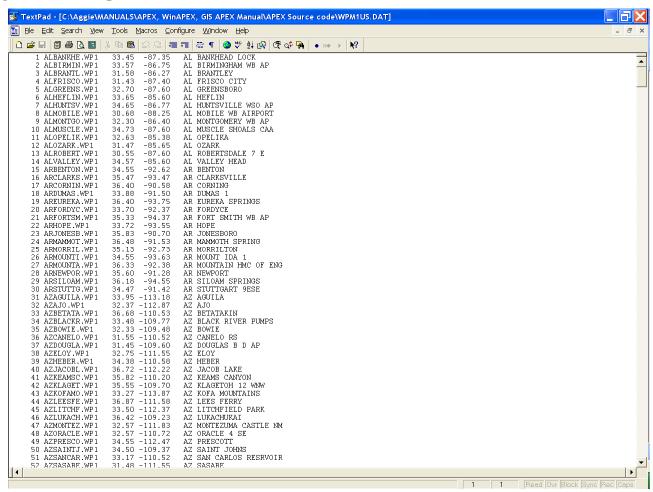
LINE 15: RH *Monthly average relative humidity (fraction), (3 options).*


3 options are available:

- Average Monthly relative humidity (Fraction, e.g. .75)
- Average Monthly dewpoint temp (Deg C)
- Blanks or zeros if unknown.

NOTE:

- 1. Conversion using 'E' in the number for English, will convert the number entered to Deg C for dewpoint temperature.
- 2. May be left zero unless a PENMAN equation is used to estimate potential evaporation. See variable IET.


Figure 2.18: Sample Weather (*.WP1) file screen.

2.14 THE APEX MONTHLY WEATHER DATA LIST (WPM1****.DAT)

The APEX Monthly Weather Data list is a listing of all monthly weather station files which have been previously created following the format previously described in section 2.11 and are available for use in creating runs. The Monthly Weather Data list consists of a numbered listing of all monthly weather files along with the latitude, longitude and a brief description of the location of the weather station which can be referenced by number in the APEXRUN.DAT file. The file is in FREE FORMAT. See Figure 2.19 for an example of the WPM1US.DAT file. The Monthly Weather list file name may be user defined; however, it must be properly identified in the APEXFILE.DAT file

Figure 2.19. Sample WPM1US.DAT file.

2.15 THE WIND DATA FILE (FILENAME.WND)

Monthly wind weather statistics of a single wind weather station are maintained in *filename.wnd*. The files need to be listed in *WINDMO.DAT* (or user chosen name). APEX considers 16 wind directions, which are crucial if the user analyzes issues of wind erosion as well as dust distribution and air quality from feedlots.

LINE 1: TITLE Description line. FORMAT: TWENTY (20) ALPHA CHARACTERS

LINE 2: TITLE Description line. FORMAT: TWENTY (20) ALPHA CHARACTERS

LINES 3-15 FORMAT: TWELVE (12) FIELDS OF SIX (6) COLUMNS INCLUDING UP TO TWO DECIMAL PLACES (FLOATING)

FILENAME.WND FILE (LINES 3 TO 19 EACH HAVE 12 FIELDS, ONE FOR EACH MONTH, JANUARY – DECEMBER):

LINE 3: UAVM Average monthly wind speed (m/s)

Wind speed is measured at a 10m height. To convert 2m height wind speed to a 10m height equivalent multiply the 2m height speed by 1.3.

UAVM is required to simulate wind erosion (ACW > 0, See ACW). It is also required if Penman or Penman-Monteith equations are used to calculate potential ET (See IET).

LINE 4: DIR1 Monthly % wind from North.

May be left zero if wind erosion is not estimated.

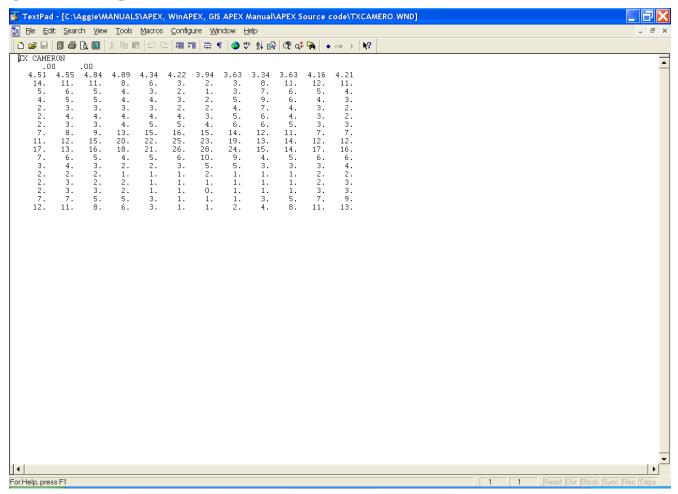
LINE 5: DIR2 Monthly % wind from North North East.

May be left zero if wind erosion is not estimated.

LINE 6: DIR3 *Monthly % wind from North East.*

May be left zero if wind erosion is not estimated.

LINE 7: DIR4 Monthly % wind from East North East.


May be left zero if wind erosion is not estimated.

LINE 8: DIR5 *Monthly % wind from East.*

May be left zero if wind erosion is not estimated.

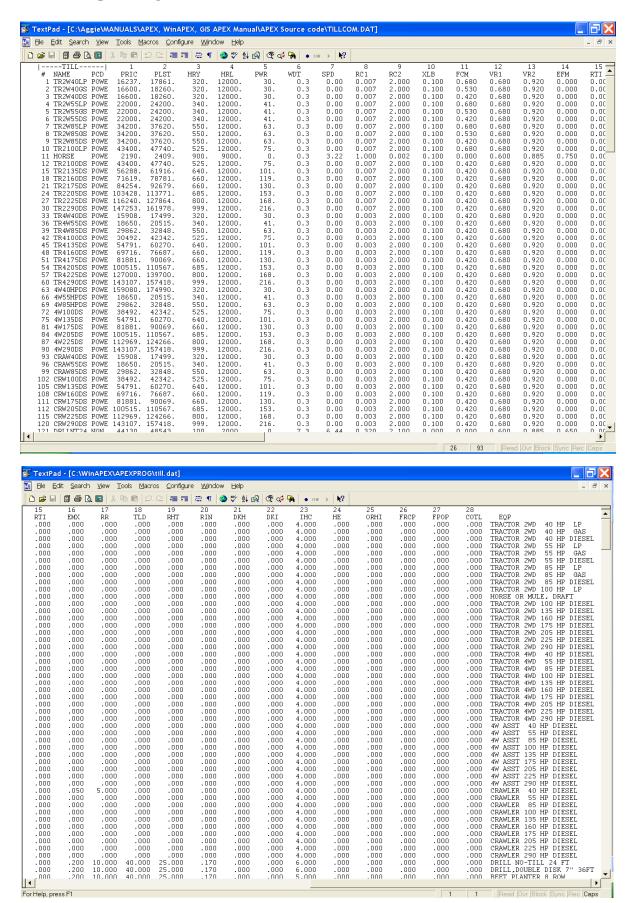
LINE 9:	DIR6	Monthly % wind from East South East. May be left zero if wind erosion is not estimated.
LINE 10:	DIR7	Monthly % wind from South East. May be left zero if wind erosion is not estimated.
LINE 11:	DIR8	Monthly % wind from South South East. May be left zero if wind erosion is not estimated.
LINE 12:	DIR9	Monthly % wind from South. May be left zero if wind erosion is not estimated.
LINE 13:	DIR10	Monthly % wind from South South West. May be left zero if wind erosion is not estimated.
LINE 14:	DIR11	Monthly % wind from South West. May be left zero if wind erosion is not estimated.
LINE 15:	DIR12	Monthly % wind from West South West. May be left zero if wind erosion is not estimated.
LINE 16:	DIR13	Monthly % wind from West. May be left zero if wind erosion is not estimated.
LINE 17:	DIR14	Monthly % wind from West North West. May be left zero if wind erosion is not estimated.
LINE 18:	DIR15	Monthly % wind from North West. May be left zero if wind erosion is not estimated.
LINE 19:	DIR16	Monthly % wind from North North West. May be left zero if wind erosion is not estimated.

Figure 2.20: Sample Wind (*.WND) file screen.

2.16 THE TILLAGE FILE (TILL****.DAT)

The tillage operations in TILL0604.DAT include most common field management activities in agricultural land use. There are 28 parameters being used to describe each tillage operation and those parameters are all listed in a single line in TILL0604.DAT file. The first two lines of TILL0604.DAT are descriptive lines and consist of columns of eight (8) alpha characters.

Field	Variable	Description
LINES 3-N	FORMAT:	ONE (1) BLANK COLUMN FOLLOWED BY ONE (1) FIELD OF FOUR (4) COLUMNS (INTEGER)FOLLOWED BY ONE (1) BLANK COLUMN FOLLOWED BY ONE FIELD OF EIGHT (8) ALPHA CHARACTERS FOLLOWED BY ONE BLANK COLUMN FOLLOWED BY ONE FIELD OF FOUR (4) ALPHA CHARACTERS FOLLOWED BY TWENTY- SEVEN (27) FIELDS OF EIGHT (8) COLUMNS INCLUDING UP TO THREE DECIMAL PLACES (FLOATING)
1	TNUM	Equipment number (cols.2-5) (Range: 1-∞) For reference purposes only. Operations are accessed by their sequential location in the file. For example, an operation number 9 will access the ninth operation regardless of the setting of this variable.
2	TIL	Tillage operation name. (cols.7-14) A descriptive name of the operation
3	PCD	 Power code. (cols. 16-19) (Range: 1-5) POWE: the machine with its own engine for power is generally used to pull other machinery or equipment, like a tractor SELF: the machine has its own engine for power but it does the operation by itself like a combine NON: the machine (or equipment) has no engine for power and it must be pulled by other machinery with engine power IRRI: irrigation equipment CUST: customized equipment.
4	PRIC	Purchase price (\$) (cols. 20-27) (Range: 0-999999) EXCEPTION: for a custom operation = cost (\$/ha) The amount of money the equipment was actually purchased for. To estimate purchase price subtract 10% from the initial list price.
5	XLP	<i>Initial list price in current (\$) (cols. 28-35)</i> (Range: 0- 999999) The price of the equipment when new. The dollar amount takes into account inflation. To estimate Initial list prices add 10% to the purchase price.
6	HRY	Annual use (h) (cols. 36-43) (Range: 0-8760) Amount of time per year the equipment is used.


Field	Variable	Description
7	HRL	Life of equip (h) (cols. 44-51) (Range: 0-999999) The amount of time the equipment will be capable of being used.
8	PWR	Power of unit (KW) (cols. 52-59) (Range: 0-900) This is the horsepower or the number of kilowatts of the equipment
		Kilowatts x $1.341 = horsepower$
9	WDT	Width of pass (m) (cols. 60-67) (Range: 0-50) This refers to the width the equipment covers when it is moved across the land.
10	SPD	Operating speed (km/h) (cols. 68-75) (Range: 0-200) The speed at which the equipment is operated at.
11	RC1	Repair cost coef 1 (cols. 76-83) (Range: 0-1) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
12	RC2	Repair cost coef 2 (cols. 84-91) (Range: 0-5) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
13	XLB	Lubricant factor (cols. 92-99) (Range: 0-1) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
14	FCM	Fuel consumption multiplier (cols. 100-107) (Range: 0-1) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
15	VR1	Remaining farm value parm 1 (cols. 108-115) (Range: 0-2) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
16	VR2	Remaining farm value parm 2 (cols. 116-123) (Range: 0-2) Refer to the American Society of Agricultural Engineers Standards Engineering Practices Data handbook for this value
17	EFM	Machine efficiency (cols. 124-131) (Range: 0-1) The fraction of efficiency loss due to the overlap of passes. For example, if each time when a pass is made across the field, the implement covers 10% of the last pass, then the machine efficiency is 0.90. In the case of irrigation systems, this machine efficiency applies to the efficiency of the system. This would include losses from the well or channel to the field.

Field	Variable	Description
		•
18	RTI	Annual real interest rate (\$/\$) (cols. 132-139) (Range: 0.001-0.15) The difference between the nominal interest rate (the current rate of interest) and the inflation rate.
19	EMX	Mixing efficiency (0-1). (cols. 140-147) (Range: 0-1) The mixing efficiency of the operation (EMX) is the fraction of materials (crop residue, pesticides and nutrients) on the soil surface that is mixed uniformly in the plow depth of the implement. The remaining fraction of residue and nutrients is left in the original location (soil surface or layer).
20	RR	Random surface roughness created by tillage operation in mm. (cols. 148-155) (Range: 0-100) This characterizes the soil surface roughness due to soil aggregates. Random roughness has been used to describe the effects of tillage on surface roughness and to estimate the surface roughness after tillage based on the tillage implement used. (Potter, K.N. 1990. Soil properties effect on random roughness decay by rainfall. Transactions of the ASAE 33 (6) 1889-1892.) The random roughness index is the standard error of adjusted natural log transformed surface elevations.
21	TLD	 Tillage depth in mm. (cols. 156-163) (Range: -2000 to 500) 1. (+) Positive depth is below the surface; 2. (-) Negative indicates above ground cutting height. 3. Also used as the lower limit of grazing height (mm)
22	RHT	Ridge height in mm (cols. 164-171) (Range: 0-1000) The height of the ridge created by the implement. This affects wind erosion.
23	RIN	Ridge interval in m (cols. 172-179) (Range: 0-200) The distance between ridges created by the implement. Also known as row spacing.
		To set the row spacing of the crop, the ridge interval should be set accordingly for the planter in the TILL0604.DAT file.
24	DKH	Height of furrow dikes in mm. (blank if dikes are not used) (cols. 180-187) (Range: 0-1000) This will affect the amount of water the furrow dike is capable of storing.
25	DKI	Distance between furrow dikes in m. (blank if dikes are not used) (cols. 188-195) (Range: 0-200)

Field	Variable	Description
26	IHC	Operation Code: (cols. 196-203) (Range: 0-26)
20	IIIC	0 Plow, cultivate, other
		1 Kill crop.
		2 Harvest without kill.
		3 Harvest once during simulation without kill
		4 Tractor
		5 Plant in rows.
		6 Plant with drill.
		7 Apply pesticide.
		8 Irrigate.
		9 Fertilize
		10 Bagging and Ties (cotton)
		11 Ginning
		12 Hauling
		13 Drying
		14 Burn
		15 Puddle
		16 Destroy puddle
		17 Builds furrow dikes
		18 Destroys furrow dikes
		19 Start grazing
		20 Stop grazing
		21 Scrape manure from pens
		22 Auto mow
		23 Plastic cover
		24 Remove plastic cover
		25 Stop drainage system flow
		26 Resume drainage flow
27	HE	Harvest efficiency (0-1), or Pesticide application efficiency. (cols. 204-211)
21	TIL	(Range: 0-1)
		As a harvest operation (IHC=2.0): This is the ratio of crop yield removed from
		the field to total crop yield.
		Besides its normal function, harvest efficiency can be used in simulating
		grazing (HE approx. equal to 0.1) or growing green manure crops (HE=0.0).
		As pesticide application efficiency, it is the fraction of the pesticide which is
		deposited on the foliage or soil surface. The remaining is lost.

Field	Variable	Description
28	ORHI	Override Harvest Index for Forage and Root Crops (cols. 212-219) (Range: 0-1) The ratio of the economic or harvestable yield to the total biomass of the crop. This value overrides the harvest index set in CROP0604.DAT if a forage or root crop is chosen.
		Over rides simulated Harvest Index (HI) if 0. < ORHI < 1 or it equals the grazing rate (kg/ha/d) if ORHI > 1.
		As the crop grows, these values may be adjusted for water stress. For some crops like hay, the harvest index is not affected by water stress. Thus, the harvest index override (ORHI) is used to give a constant harvest index. Another important feature of ORHI is the provision for two different types of harvest of the same crop. For example, the seed could be removed from a crop and the later the straw could be baled. The water-stress-adjusted HI is appropriate for the seed harvest but probably not for baling the straw. Thus, two separate harvest machines are required. The second harvester sets ORHI approx. equal to 0.9 to override the adjusted HI used in the first harvest.
		Values greater than 1 are kg/ha of biomass removed per day by grazing. For example, one animal/month is about the equivalent to 24 kg/day (12 kg/day consumed and an equivalent amount trampled).
29	FRCP	Fraction of soil compacted (cols. 220-227) (Range: 0-1) (tire width/tillage width).
30	FPOP	Fraction plant population reduced by operation. (cols. 228-235) (Range: 0-1) This operation can be used for thinning operations to reduce the plant population which was actually planted. It can also be used to decrease plant population after a harvest (i.e. sugarcane) or due to a tillage operation. It is a correction to the seeded rate.
31	COTL	Cost of operation (cols. 236-243) (Range: 0-9999) This parameter is calculated by the model.

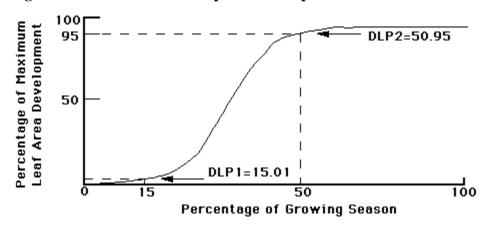
Figure 2.21: Sample Tillage file screen.

2.17 THE CROP FILE (CROP****.DAT)

Each crop is characterized with 56 parameters, which are all put in a single line in **CROP0604.DAT**. The crop-parameters **should not** be changed without consulting the model designers or without solid knowledge of plant growth and development. The first two lines of the CROP0604.DAT are descriptive lines and consist of twelve (12) alpha characters

Field	Variable	Description
LINES 3-N	FORMAT:	ONE (1) BLANK COLUMN FOLLOWED BY ONE (1) FIELD OF FOUR (4) COLUMNS (INTEGER)FOLLOWED BY ONE (1) BLANK COLUMN FOLLOWED BY ONE FIELD OF FOUR (4) ALPHA CHARACTERS FOLLOWED BY FIFTY-SIX (56) FIELDS OF EIGHT (8) COLUMNS INCLUDING DECIMAL PLACES (FLOATING)
1	CNUM	<i>Crop Number.</i> (cols. 2-5) For reference purposes only. Crops are accessed by their sequential location in the file. For example, a crop number 9 will access the ninth crop regardless of the setting of this variable.
2	CPNM	Crop Name. (cols. 7-10) A four character name to represent the crop.
3	WA	Biomass-Energy Ratio (CO2=330ppm). (cols. 11-18) This is the potential (unstressed) growth rate (including roots) per unit of intercepted photosynthetically active radiation. This parameter should be one of the last to be adjusted. Adjustments should be based on research results. This parameter can greatly change the rate of growth, incidence of stress during the season and the resultant yield. Care should be taken to make adjustments in the parameter only based on data with no drought, nutrient or temperature stress. WA is also known as radiation use efficiency.
4	HI	Harvest index. (cols. 19-26) The ratio of economic or harvestable yield to the total biomass of the crop. This crop parameter should be based on experimental data where crop stresses have been minimized to allow the crop to attain its potential. HI is the maximum harvest index that could possibly be attained under nonstressed conditions. APEX adjusts HI as water stress occurs from near flowering to maturity. This HI only pertains to grain and cotton crops. For forage and root crops, the Override Harvest Index (ORHI) should be set in the TILL0604.DAT file for the harvest equipment being used to harvest the crop.

Field	Variable	Description
5	TG	Optimal temperature for plant growth. (cols. 27-34) The optimum temperature at which the crop will grow without being physiologically damaged by heat. TB and TG are very stable for cultivars within a species. They should not be changed once they are determined for a species. Varietal or maturity type differences are accounted for by different sums of thermal units.
6	ТВ	Minimum temperature for plant growth. (cols. 35-42) The minimum (base) temperature at which the crop will grow without being physiologically damaged by cold. TB and TG are very stable for cultivars within a species. They should not be changed once they are determined for a species. Varietal or maturity type differences are accounted for by different sums of thermal units.
7	DMLA	Maximum potential leaf area index. (cols. 43-50) Leaf area index refers to the ratio of the surface area of the leaves (one side only) of the crop to the area of the ground covered by the plants. This parameter refers to the greatest leaf area index that the crop is able to attain. The parameters in the CROP0604.DAT data set are based on the highest expected plant densities for crops not expected to have water stress. DMLA is internally adjusted for drought-prone regions as planting densities are much smaller in these areas unless irrigation is used.
8	DLAI	Fraction of growing season when leaf area declines. (cols. 51-58) Point in the growing season (expressed as a fraction of heat units required for maturation) when the leaf area index begins to decrease due to leaf senescence. The fraction of the growing season in heat units is divided by the total heat units accumulated between planting and crop maturity. If the date at which leaf area normally declines is known, one of the options in APEX can be used to estimate the fraction of heat units accumulated. A multi-run APEX simulation is setup with IGSD equal to 366. A one-year simulation followed by a one-year multi-run will produce a multi-run simulation, which has average heat units per month and the total heat units to maturity. The harvest date kill operations should be set to the crop maturity date. The estimated heat units at maximum leaf area can then be divided by the heat units at maturity to estimate the fraction of the growing season at which leaf-area-index start to decline.


Field	Variable	Description
9	DLAP1	First point on optimal leaf area development curve. (cols. 59-66) This is the first of two points on the optimal (nonstressed) leaf area development curve. Numbers before decimal are % of growing season. Numbers after decimal are fractions of maximum potential LAI. For example 15.01 states that at 15% of the growing season, 1% of the LAI has developed. Research results or observations on the % of maximum leaf area at two points in the development of leaf area can be used in conjunction with an APEX simulation like that described for DLAI. The results of the one-year multi-run will establish the cumulative heat units by month from planting to maturity. Then calculate percent of cumulative heat units by dividing estimated cumulative heat units for each of the two dates where you've estimated percent of Max LAI by the average annual heat units shown on the bottom of the crop parameter set at the beginning of the APEX run. The percent of heat units for first monthly estimate is the number on the left of the decimal for DLAP1 and
10	DLAP2	Second point on optimal leaf area development curve. (cols. 67-74) The second of two points on optimal (nonstressed) leaf area development curve. Numbers before decimal are % of growing season. Numbers after decimal are fractions of maximum potential LAI. For example 50.95 states that at 50% of the growing season, 95% of the LAI has developed. Research results or observations on the % of maximum leaf area at two points in the development of leaf area can be used in conjunction with an APEX simulation like that described for DLAI. The results of the one-year multi-run will establish the cumulative heat units by month from planting to maturity. Then calculate percent of cumulative heat units by dividing estimated cumulative heat units for each of the two dates where you've estimated percent of Max LAI by the average annual heat units shown on the bottom of the crop parameter set at the beginning of the APEX run. The percent of heat units for second date estimate is the number on the left of the decimal for DLAP2 and the estimated percent of the Max LAI is the number in the right of the decimal.

The following graph illustrates how DLPI = 15.01 and DLP2 = 50.95 define the leaf area development of a crop.

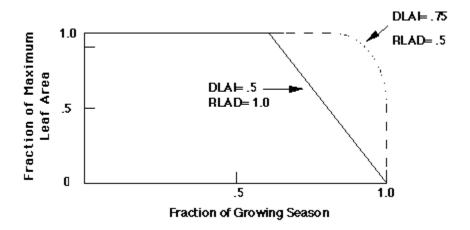
Field Variable Description

DLAP2 cont.

Figure 2.22: Leaf area development of crop based on DLAP1 and DLAP2

11 RLAD Leaf area index decline rate parameter. (cols. 75-82)

For most grain crops, leaf area declines due to leaf senescence as the crop approaches physiological maturity. In most cases, leaf senescence begins with yellowing of the older (lower) leaves and proceeds upward until, in crops like corn, wheat, and soybeans, all leaves senesce and the plant dies. In many grain crops, leaf area index declines linearly with time after grain filling begins. Nutrients and carbohydrates in the senescing leaves are often translocated into the grain. In EPIC the crop parameter DLAI (described above) controls the point in the growing season when leaf area begins to decline. The crop parameter RLAD controls the rate of decline. If RLAD is set to 1.0, the rate of decline is linear. If RLAD < 1.0, the rate of decline is initially slow, then increases until all leaves are dead at maturity. If RLAD > 1.0, the rate of senescence is initially rapid, then slows as maturity approaches. In all cases, APEX assumes that leaf area begins to decline when the fraction of the growing season equals DLAI, and the leaf area index approaches zero at maturity.


- 1. 1.0 is linear
- 2. >1 accelerates decline
- 3. < 1 retards decline rate.
- 4. Values range from 0 to 10.

The graph below illustrates how DLAI and RLAD interact to control leaf area decline.

Field Variable Description

RLAD cont.

Figure 2.23: Leaf area development of crop based on DLAI and RLAD

12 RBMD Biomass-energy ratio decline rate parameter. (cols. 83-90)

Biomass-energy ratio decline rate parameter for late in the cropping season. This crop parameter functions like the RLAD above for values ranging from 0-10. It reduces the efficiency of conversion of intercepted photosynthetically active radiation to biomass due to production of high energy products like seeds and/or translocation of N from leaves to seeds. In most crops this rate is relatively constant during the vegetative stage of growth, when structural carbohydrates like cellulose are the principal products of growth. However, when grain crops begin to form seeds, the conversion of intercepted solar radiation into biomass begins to decline. That is, less dry matter is formed for each unit of absorbed solar radiation. In addition, as leaf area yellows and begins to senesce, the conversion efficiency declines still more. APEX uses the crop parameter RBMD to reduce the rate of conversion of intercepted solar radiation to biomass as the crop approaches maturity (when the fraction of the growing season is greater than DLAI). Computationally, RBMD reduces WA like RLAD reduces leaf area index (see graph above) For example, RBMD = 1.0 causes a linear decline in WA as the crop matures from DLAI to physiological maturity.

- 1. 1.0, decline is linear
- 2. <1.0, the rate of decline is initially slow, then increases until all leaves are dead at maturity.
- 3. >1.0, the rate of decline is initially rapid, then slows as maturity approaches.
- 4. Values range from 0 to 10.

Field Variable Description

13	ALT	Aluminum tolerance index (cols. 91-98) Index of crop tolerance to aluminum saturation. Ranges from 1 to 5 with 1=sensitive and 5=tolerant.
14	GSI	Maximum Stomatal Conductance. (cols. 99-106) The crop parameter GSI is the maximum stomatal conductance (ms-1) at high solar radiation and low vapor pressure deficit. Korner et. al (1979) reported maximum stomatal conductance values for 246 species and cultivars. (Korner, C. H., J. A. Scheel, and H. Bauer. 1979. Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13(1): 45-82.)
15	CAF	Critical aeration factor. (cols. 107-114) Fraction of soil porosity where poor aeration starts limiting plant growth. This is set at 0.85 for most crops, with rice being the major exception with a value of 1.0.
16	SDW	Seeding rate. (cols. 115-122) Normal planting rate (kg/ha). Note this does not change the plant population. It only impacts seed cost and start crop biomass.
17	НМХ	Maximum crop height (cols. 123-130) The greatest potential height the crop will reach. in m.
18	RDMX	Maximum root depth (cols. 131-138) The greatest depth to which the rooting system will penetrate in m. This effects soil moisture extraction.

Variable	Description	
	Variable	Variable Description

19 WAC2 CO₂ Concentration /Resulting WA value (Split Variable). (cols. 139-146) In APEX, radiation use efficiency is sensitive to atmospheric CO₂ concentration. WAC2 is an "S" curve parameter used to describe the effect of CO₂ concentration on the crop parameter WA. The value on the left of the decimal is a value of CO₂ concentration higher than ambient (i.e., 450 or 660 ul/l). The value on the right of the decimal is the corresponding value WA. This elevated value of WA can be estimated from experimental data on shortterm crop growth at elevated CO₂ levels. Calculate the ratio of crop growth rate at elevated CO₂ to crop growth at approximately 330 ul 1-1 CO₂. Multiply that ratio by the value of WA at 330 ul l-1 to obtain the value on the right of the decimal. Typical values of the ratio are 1.1 to 1.2, 1.15 used in crop0604. for crops with the C4 photosynthetic pathway and 1.3 to 1.4, 1.35 used in crop0604 for C3 crops. (Kimball, B.A. 1983 Carbon dioxide and agricultural yield: an assemblage and analysis of 770 prior observations. Water Conservation Laboratory Report 14. USDA/ARS. Phoenix, Arizona). 20 **CNY** Fraction of nitrogen in yield. (cols. 147-154) Normal fraction N in yield (g g⁻¹). The amount of nitrogen removed from the plant through the harvesting of the crop. This is the fraction of nitrogen in the vield compared to the entire plant This was estimated from Morrison's Feeds and Feeding and other data sources of plant nutrition. The percentage N in Morrison was adjusted to a dry weight by dividing by the fraction of dry matter to total yield. 21 **CPY** Fraction of phosphorus in yield. (cols. 155-162) The amount of phosphorus removed from the plant through the harvesting of the crop. This is the fraction of phosphorus in the yield compared to the entire Normal fraction of P in yield (g g⁻¹). Estimated by same procedure as CNY above 22 **CKY** Fraction of potassium in yield. (cols. 163-170) Currently Potassium function is not enabled and therefore CKY is not considered in the model 23 WSYF Lower limit of harvest index. (cols. 171-178) Fraction between 0 and HI value that represents the lowest harvest index expected due to water stress. A few crops can have slight increases in harvest index ie. the sugar content is higher in somewhat stressed sugar crops.

Field	Variable	Description
rieia	variable	Describuon

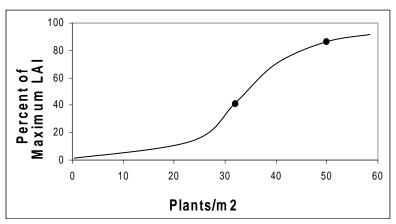
24	PST	Pest (insects and disease) factor. (cols. 179-186) Fraction of yield remaining after damage. Usually set at 0.60. APEX has an adjustment process that is a function of moisture, temperature and residue. This presently is a reasonable estimate, but future versions may include more detailed procedures. You may wish to adjust the parameter in geographic areas known to have large amounts of damage from pests.
25	COSD	Seed cost ($\$ kg^{-1}$). (cols. 187-194) Cost of seed is used for economic analyses only.
26	PRYG	Price for yield ($\$ t^{-1}$). (cols. 195-202) Price for grain yield is used for economic analyses only.
27	PRYF	Price for forage yield ($\$t^1$). (cols. 203-210) Price for forage yield is used for economic analyses only.
28	WCY	Fraction water in yield. (cols. 211-218) The amount of water present in the yield at the time of harvest. Expressed as a fraction. The yields of most grain crops are reported at a standard grain water content; however, for some applications, grain dry weight is appropriate (WCY = 0). APEX yield output is all in dry weight (WCY = 0).
29	BN1	Nitrogen uptake parameter (N fraction in plant at emergence). (cols. 219-226) Normal fraction of N in crop biomass at emergence - This parameter is based
30	BN2	on research results published in the literature for this or a similar crop. Nitrogen uptake parameter (N fraction in plant at 0.5 maturity). (cols. 227-234) Normal fraction of N in crop biomass at mid-season - Same as BN1.
31	BN3	Nitrogen uptake parameter (N fraction in plant at maturity). (cols. 235-242) Normal fraction of N in crop biomass at maturity - Same as BN1.
32	BP1	Phosphorus uptake parameter (P fraction in plant at emergence). (cols. 243-250) Normal fraction of P in crop biomass at emergence - Same as BN1.
33	BP2	Phosphorus uptake parameter (P fraction in plant at 0.5 maturity). (cols. 251-258) Normal fraction of P in crop biomass at mid-season - Same as BN1.
34	BP3	Phosphorus uptake parameter (P fraction in plant at maturity). (cols. 259-266) Normal fraction of P in crop biomass at maturity - Same as BN1.

Field	Variable	Description
35	BK1	Potassium uptake parameter (K fraction in plant at emergence) (cols. 267-274) Currently Potassium function is not enabled and therefore BK1 is not considered in the model
36	BK2	Potassium uptake parameter (K fraction in plant at0.5 maturity (cols. 275-282) Currently Potassium function is not enabled and therefore BK2 is not considered in the model
37	BK3	Potassium uptake parameter (K fraction in plant at maturity (cols. 283-290) Currently Potassium function is not enabled and therefore BK3 is not considered in the model
38	BW1	Wind erosion factor for standing live. (cols. 291-298) Wind erosion factor for standing live biomass - Based on the Manhattan wind erosion equations for this crop or a similar crop used in the Manhattan wind erosion equations.
39	BW2	Wind erosion factor for standing dead. (cols. 299-306) Wind erosion factor for standing dead crop residue - Same as BW1.
40	BW3	Wind erosion factor for flat residue. (cols. 307-314) Wind erosion factor for flat residue - Same as BW1.
41	IDC	Crop category number: (cols. 315-322) 1 Warm season annual legume. 2 Cold season annual legume. 3 Perennial legume. 4 Warm season annual. 5 Cold season annual. 6 Perennial. 7 Evergreen Tree crop 8 Deciduous Tree crop 9 Cotton NOTE: Other crop parameters (TB, TG, FRS1, FRS2) also differentiate
		between cold and warm climate crops.

between cold and warm climate crops.

Field	Variable	Description
Ficiu	v at table	Description
42	FRST1	First point on frost damage curve. (cols. 323-330) The first of two points on the frost damage curve. Numbers before decimal are the minimum temperatures (degrees C) and numbers after decimal are the fraction of biomass lost each day the specified minimum temperature occurs. NOTE: 10.20 means 20 percent of the biomass is lost each day a temperature of -10C is reached. The negative sign on degrees is added by APEX since no frost damage is assumed to occur above 0 degrees C. These two parameters should be based on a combination of research results and observation. Precise data for field application is subject to microclimate variation across the landscape. Current parameters are reasonable estimates; However, they are more likely to understate frost damage than to overstate frost damage.
43	FRST2	Second point on frost damage curve. (cols. 331-338) Second of two points on the frost damage curve. Numbers before decimal are the minimum temperatures (C) and numbers after decimal are the fraction of biomass lost each day the specified minimum temperature occurs. NOTE: 10.20 means 20 percent of the biomass is lost each day a temperature of -10C is reached. The negative sign on degrees is added by APEX since no frost damage is assumed to occur above 0 degrees C. These two parameters should be based on a combination of research results and observation. Precise data for field application is subject to microclimate variation across the landscape. Current parameters are reasonable estimates. However, they are more likely to understate frost damage than to overstate frost damage.
44	WAVP	Parm relating vapor pressure deficit to WA. (cols. 339-346) In APEX, radiation use efficiency (RUE) is sensitive to vapor pressure deficit (VPD). As VPD increases, RUE decreases. The crop parameter WAVP is the rate of the decline in RUE per unit increase in VPD. The value of WAVP varies among species, but a value of 6 to 8 is suggested as an approximation for most crops.
45	VPTH	Threshold VPD (KPA) (cols. 347-354) In APEX, leaf conductance is insensitive to VPD until VPD (calculated hourly) exceeds the threshold value, VPTH (usually 0.5 to 1.0 kPa).

Field	Variable	Description
46	VPD2	VPD value (KPA) (cols. 355-362) In APEX, leaf conductance declines linearly as VPD increases above VPTH. VPD2 is a double parameter in which the number on the left of the decimal is some value of VPD above VPTH (e.g. 4.0), and the number on the right of the decimal is the corresponding fraction of the maximum leaf conductance at the value of VPD (e.g., 0.7).
47	RWPC1	Fraction of root weight at emergence. (cols. 363-370) This is one of the partitioning parameters to split biomass between above ground and roots. RWPC1 is the partitioning fraction at emergence and RWPC2 is partitioning fraction at maturity. Between those two points there is a linear interpolation of the partitioning fraction relative to accumulative heat units.
48	RWPC2	Fraction of root weight at maturity. (cols. 371-378) This is one of the partitioning parameters to split biomass between above ground and roots. RWPC1 is the partitioning fraction at emergence and RWPC2 is partitioning fraction at maturity. Between those two points there is a linear interpolation of the partitioning fraction relative to accumulative heat units.
49	GMHU	Heat Units required for Germination. (cols. 379-386) This delays germination from the planting date or the date at which the temperature of soil layer 2 exceeds TG. Heat units are accumulated on an annual basis.
50	PPLP1	Plant Population for Crops & Grass-1st Point on curve. (cols. 387-394) First of two points on population curve. Plant Population for crops, grass etc., except trees or plants requiring more than 1 m2/plant. The number to the left of the decimal is the number of plants and the number to right is the fraction of maximum leaf area at that population. Plant population is expressed as plants per square meter.
		If the crop is trees, the population is expressed as plants per hectare and the second plant population point is placed in the SMR1 position and the first point placed in the SMR2 position. The first point should be the higher population.
		 » If entering PLANTS/m² then PPLP1(SMR1)<pplp2(smr2)< li=""> » If entering PLANTS/ha then PPLP1(SMR1)>PPLP2(SMR2) </pplp2(smr2)<>

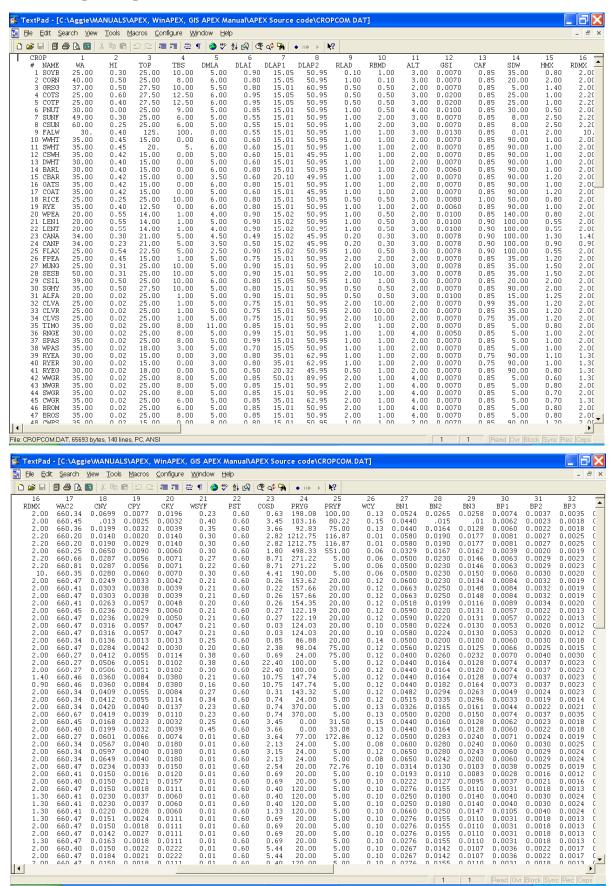

Field	Variable	Description
51	PPLP2	Plant Population for Crops & Grass - 2nd Point on curve. (cols. 395-402) Second of two points on population curve. The number to the left of the decimal is the number of plants and the number to right is the fraction of maximum leaf area at the population. Plant population is expressed as plants per square meter.
		If the crop is trees, the population is expressed as plants per hectare and the

If the crop is trees, the population is expressed as plants per hectare and the second plant population point is placed in the SMR1 position and the first point placed in the SMR2 position. The first point should be the higher population.

- » If entering PLANTS/m² then PPLP1(SMR1)<PPLP2(SMR2)
- » If entering PLANTS/ha then PPLP1(SMR1)>PPLP2(SMR2)

For example, corn has a PPLP1 = 30.43 and PPLP2 = 50.71. This means at 30 plants per square meter 43% of maximum leaf area can be attained which is also the 1st point on the population curve. PPLP2 means at 50 plants per square meter 71% of maximum leaf area can be attained. This is the 2nd point on population curve for corn production. Since PPLP1 is less than PPLP2, it shows the population density of a crop other than trees. However, for pine tree, PPLP1 = 1000.95 and PPLP2 = 100.10. While the numbers before and after decimal have the same explanations as given for corn, it indicates the population density is for a tree crop because here PPLP1 is greater than PPLP2.

Figure 2.24: Illustration of a plant population curve.


52 STX1 Salinity affect on yield (cols. 403-410)
This is the yield decrease per increase in salinity. Currently the salinity function is not enabled so the model will not consider STX1 in the simulation.

53 STX2 Salinity threshold (cols. 411-418)

The threshold point at which any increase in salinity will cause a decrease in yield. Currently the salinity function is not enabled so the model will not consider STX2 in the simulation.

Field	Variable	Description
54	BLG1	Lignin fraction in plant at 0.5 maturity (cols. 419-426)
55	BLG2	Lignin fraction in plant at full maturity (cols. 427-434)
56	WUB	Water use conversion to biomass (t/mm) (cols. 435-442) The amount of biomass produced per unit of water applied (irrigation + rainfall).
57	FTO	Fraction turnout for cotton (cols. 443-450) The fraction of lint present in the total plant material (lint + seed + trash (leaf and stem particles)) harvested. This value is higher for cotton which is picked compared to stripped because less trash is collected along with the lint and seed as it is harvested. A typical value for picker cotton is 0.38 and 0.27 for stripper cotton.
		Turnout fraction = (lint weight / (seed weight + lint weight + trash weight))
58	FLT	Fraction lint for cotton (cols. 451-458) The fraction of lint present in the total seedcotton (seed + lint) harvested. This variable differs from FTO in that trash is not included in the total harvested weight. Lint fraction cannot be greater than turnout fraction.
		Lint fraction = (lint weight / (seed weight + lint weight))
59	FNAME	Full name of crop

Figure 2.25: Sample Crop file screen.

▼ TextPad	- [C:\Age	ie\MANUAL	S\APEX,	WinAPEX,	GIS APE	K Manual	APEX Sou	ce code\(ROPCOM	DAT]							X
🖺 Eile Edit	Search	⊻jew <u>T</u> ools	Macros	<u>C</u> onfigure	<u>W</u> indow	Help										-	∂ ×
	9 4 0.		a 2. C	 	≘ ¶ 🍪	#BC A↓ EĀ	(₹ of ¶	• 110 1	₩?								
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	5 🛧
BK1 0.0120	BK2 0.0100	BK3 0.0090	BW1 1.266	BW2 0.633	BW3 0.729	IDC 1.	FRST1 5.15	FRST2 15.95	WAVP 5.00	VPTH 0.50	VPD2 4.75	RWPC1 0.40	RWPC2 0.20	GMHU 100.00	PPLP1 30.43	PPLP2 50.71	2
0.0150	0.0120	0.0090	0.433	0.433	0.723	4.	5.15	15.95	8.00	0.50	4.75	0.40	0.20	100.00	4.47	7.77	
0.0270	0.0180	0.0130	0.657	0.657	0.320	4.	5.15	15.95	7.00	0.50	4.75	0.40	0.20	100.00	3.20	10.90	
0.0300	0.0220	0.0150	1.138	0.603	0.332	9.	5.15	15.95	3.00	1.00	4.30	0.40	0.10	100.00	3.20	10.90	
0.0300	0.0220	0.0150	1.138	0.603	0.332	9.	5.15	15.95	3.00	1.00	4.30	0.40	0.10	100.00	3.20	10.90	
0.0300	0.0200	0.0090	1.266	0.633	0.729	1.	5.15	15.95	4.00	0.50	4.75	0.40	0.60	100.00	3.10	10.90	
0.0290	0.0200	0.0100	3.390	3.390	1.610	4.	5.15	15.95	7.00	0.50	4.75	0.40	0.20	100.00	2.63	6.99	
0.0290	0.0200	0.0100	3.390	3.390	1.610	4.	5.15	15.95	7.00	0.50	4.75	0.40	0.20	100.00	2.63	6.99	
0.0290	0.0200	0.0100	1.138	0.603	0.332	4.	5.15	15.95	7.00	0.50	4.75	0.40	0.20	0.00	1.10	4.90	
0.0230	0.0200	0.0170	3.390	3.390	1.610	5.	5.01	15.10	6.	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0230 0.0230	0.0200	0.0170 0.0170	3.390 3.390	3.390 3.390	1.610	5. 5.	5.01 5.01	15.10 15.10	10. 8.00	0.50 0.50	4.75 4.75	0.40	0.20	0.00	125.60 125.60	250.95 250.95	
0.0230	0.0200	0.0170	3.390	3.390	1.610	5. 5.	5.01	15.10	7.00	0.50	4.75	0.40 0.40	0.20 0.20	100.00	125.60	250.95	
0.0230	0.0160	0.0170	3.390	3.390	1.610	5.	5.01	15.10	7.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0160	0.0160	0.0150	3.390	3.390	1.610	5.	5.01	15.10	8.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0280	0.0200	0.0120	3.390	3.390	1.610	5.	5.01	15.10	7.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0280	0.0200	0.0120	3.390	3.390	1.610	5.	5.01	15.10	8.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0250	0.0150	0.0080	3.390	3.390	1.610	4.	5.05	15.95	5.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0180	0.0150	0.0120	3.390	3.390	1.610	5.	5.01	15.10	7.00	0.50	4.75	0.40	0.20	100.00	125.60	250.95	
0.0140	0.0130	0.0120	3.390	3.390	1.610	2.	5.01	15.10	4.00	0.50	4.75	0.40	0.20	100.00	20.20	100.90	
0.0140	0.0130	0.0120	1.266	0.633	0.729	1.	5.01	15.10	4.00	0.50	4.75	0.40	0.20	100.00	20.20	100.90	
0.0140	0.0130	0.0120	1.266	0.600	0.729	2.	5.01	15.10	4.00	0.50	4.75	0.40	0.20	100.00	20.20	100.90	
0.0440 0.0440	0.0160	0.0130 0.0130	1.266 1.266	0.633 0.633	0.729 0.729	1. 1.	5.05 5.05	15.10 15.10	10.00 10.00	0.50 0.50	4.75 4.75	0.40	0.20 0.20	100.00	20.20	100.90 100.90	
0.0200	0.0130	0.0130	1.266	0.633	0.729	2.	5.05	15.10	10.00	1.00	4.75	0.40	0.20	100.00	20.20	100.90	
0.0140	0.0130	0.0120	3.390	3.390	1.610	2.	5.01	15.10	10.00	1.00	4.75	0.40	0.20	100.00	20.20	100.90	
0.0140	0.0130	0.0120	1.266	0.633	0.729	1.	5.05	15.95	10.00	1.00	4.75	0.40	0.20	100.00	20.20	100.90	
0.0140	0.0140	0.0130	1.266	0.633	0.729	1.	5.05	15.95	10.00	1.00	4.75	0.40	0.20	100.00	20.20	100.90	
0.0150	0.0120	0.0090	1.266	0.633	0.729	4.	5.01	15.95	8.00	0.50	4.75	0.40	0.20	100.00	4.47	7.77	
0.1500	0.1500	0.1500	3.390	3.390	0.320	4.	5.05	15.95	7.00	0.50	4.75	0.40	0.20	100.00	5.43	15.79	
0.0231	0.0189	0.0178	3.390	3.390	3.390	3.	5.01	15.10	4.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0220	0.0200	0.0180	3.390	3.390	3.390	2.	5.01	15.10	10.00	1.00	4.75	0.40	0.20	100.00	22.50	40.71	
0.0220	0.0200	0.0180	3.390	3.390	3.390	2.	5.01	15.10	10.00	1.00	4.75	0.40	0.20	100.00	22.50	40.71	
0.0300 0.0180	0.0230	0.0180 0.0150	3.390 3.390	3.390 3.390	3.390 3.390	2. 6.	5.01 5.05	15.10 15.95	10.00 8.00	1.00	4.75 4.75	0.40	0.20 0.20	100.00 100.00	22.50 22.50	40.71 40.71	
0.0210	0.0120	0.0090	3.390	3.390	3.390	6.	1.10	5.95	6.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0210	0.0120	0.0030	3.390	3.390	3.390	6.	5.05	15.95	7.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0122	0.0111	0.0083	3.390	3.390	1.610	6.	5.01	15.10	6.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0180	0.0150	0.0120	3.390	3.390	1.610	6.	5.01	15.10	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0180	0.0150	0.0120	3.390	3.390	1.610	6.	5.01	15.10	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0230	0.0150	0.0110	3.390	3.390	1.610	5.	5.01	15.10	6.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0230	0.0230	0.0230	3.390	3.390	3.390	6.	5.01	15.95	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0230	0.0230	0.0230	3.390	3.390	3.390	6.	5.01	15.95	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0270	0.0270	0.0270	3.390	3.390	3.390	6.	5.01	15.95	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0230	0.0230	0.0230	3.390	3.390	3.390	6.	5.01	15.95	8.00	0.50	4.75	0.40	0.20	100.00	22.50	40.71	
0.0220 0.0210	0.0240	0.0270 0.0270	3.390	3.390 3.390	3.390	6.	1.01 5.01	5.95 15.95	8.00	0.50	4.75	0.40	0.20	100.00	10.20	50.90 40.71	
, n noon	0.0230	0.0270	3.390	3.390	3.390	6.	5.01	15.95	8.00	0.50	4.75	0.40 n 4n	0.20 n 20	100.00	22.50 22.50	40.71	▼
1											_ / _	411	/!!	1		/ !)
												1	1	Dood Du	Rlock Co.	nc Rec Car	no.
														ji teau jov	i juliuck jay	ne jnee joa	10

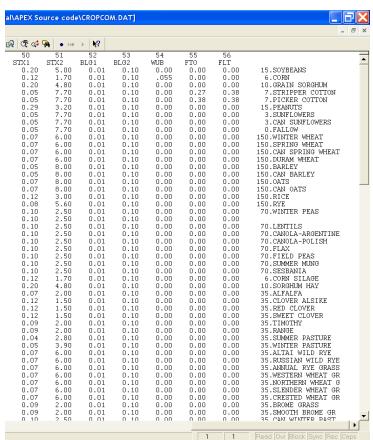
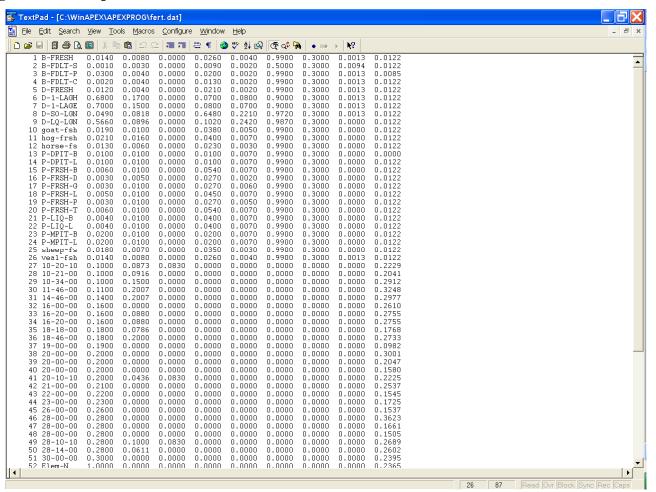


Table 2.8: Crop name and number included in CROP0604.DAT

Cı	rop No.	Crop Name	Cr	op No.	Crop Name	Cr	op No.	Crop Name
1	SOYB	Soybean	47	BROS	Smooth Brome Grass	93	VELV	Velvetleaf
2	CORN	Corn	48	CWPS	Cow Peas	94	GRFX	Green Foxtail
3	GRSG	Grain Sorghum	49	BERM	Bermuda Grass	95	CEAT	Cheat grass
4	COTS	Stripper Cotton	50	POTA	Potato	96	LBST	Little Bluestem grass
5	COTP	Picker Cotton	51	ASPR	Asparagus	97	GRMA	Grama grass
6	PNUT	Peanut	52	BROC	Broccoli	98	BUFF	Buffalo grass
7	SUNF	Sunflower	53	CABG	Cabbage	99	SGUM	Sweet Gum tree
8	CSUN	Canadian Sunflower	54	CAUF	Cauliflower	100	CASS	Casava
9	FALW	Fallow	55	CELR	Celery	101	COWP	Cowpea
10	WWHT	Winter Wheat	56	LETT	Lettuce	102	CHKP	Chickpea
11	SWHT	Spring Wheat	57	OLET	Leaf Lettuce	103	BAHG	Bahia grass
12	CSWH	Canadian Spring Wheat	58	SPIN	Spinach	104	BUWH	Buckwheat
13	DWHT	Durum Wheat	59	CRRT	Carrot	105	PRMI	Proso Millet
14	BARL	Barley	60	ONIO	Onion	106	SEBK	Sea buckthorn
15	CBAR	Canadian Barley	61	SGBT	Sugarbeet	107	POAN	Annual Bluegrass (Poa)
16	OATS	Oats	62	GRBN	Green Beans	108	GRAP	Grapes
17	COAT	Canadian Oats	63	LIMA	Lima Beans	109	PTOM	Processing tomatoes
18	RICE	Rice	64	PEAS	Black Eyed Peas	110	BRSH	CRP West Brush
19	RYE	Rye	65	CUCM	Cucumber	111	LESP	Lespedeza grass
20	WPEA	Winter Pea	66	EGGP	Egg plant	112	ORCH	Orchard grass
21	LENW	Lentil	67	CANT	Cantaloupe	113	LOVE	Love grass
22	LENT	Lentil	68	HMEL	Honey Melon	114	ASH	Ash trees
23	CANA	Canola (Argentina)	69	WMEL	Water Melon	115	OAK	Oak trees
24	CANP	Canola (Poland)	70	PEPR	Pepper	116	SHBG	Sherman Bluegrass
25	FLAX	Flax	71	STRW	Strawberry	117	KNAF	Kenaf
26	FPEA	Field Pea	72	TOMA	Tomato	118	INDI	Indian grass
27	MUNG	Mung Bean	73	SPOT	Sweet Potato	119	COFF	Coffee
28	SESB	Sesame Bean	74	SCRN	Sweet Corn	120	MISC	Miscanthus
29	CSIL	Corn Silage	75	TOBC	Tobacco	121	PAVE	Pavement
30	SGHY	Sorghum Hay	76	SUGC	Sugar Cane	122	ORCD	Orchard
31	ALFA	Alfalfa	77	FESC	Fescue grass	123	PAST	Pasture
32	CLVA	Clover (Alsike)	78 7 8	PMIL	Pearl Millet	124	AGRL	Agricultural - General
33	CLVR	Clover (Red)	79	PINE	Pine tree	125	AGRR	Agricultural - Row crops
34	CLVS	Clover (Sweet)	80	MESQ	Mesquite tree	126	RNGB	Brush range
35	TIMO	Timothy Hay	81	APPL	Apple tree	127	FRSD	Forest - Deciduous
36	RNGE	Range Grass	82	POPL	Poplar tree	128	FRSE	Forest - Evergreen
37	SPAS	Spring Pasture	83	BLOC	Black Locust Tree	129	WETL	Wetland - General
38	WPAS	Winter Pasture	84	SWCH	Switchgrass	130	WETN	Wetland - Non Forested
39	RYEA	Annual Rye	85 86	DRYB	Drybeans Eaba bases	131	SWRN	Southwestern range
40	RYER	Perennial Rye		FABN	Faba beans	132	HAY	Hay Forcet Mixed
41	RYEG	Rye Grass	87	SOGR	Sideoats Grama grass	133	FRST	Forest - Mixed
42	WWGR	Western Wheat Grass	88	BBGR	Big Bluestem grass	134	WETF	Wetland - Forested
43	NWGR	Northern Wheat Grass	89	EGGR	Eastern Gama grass	135	AGRC	Agricultural - Close Grown
44 45	SWGR	Slender Wheat Grass	90	JHGR	Johnsongrass			
45 46	CWGR	Crested Wheat Grass	91	GTFX	Giant Foxtail			
46	BROM	Crested Brome Grass	92	COCB	Cocklebur			

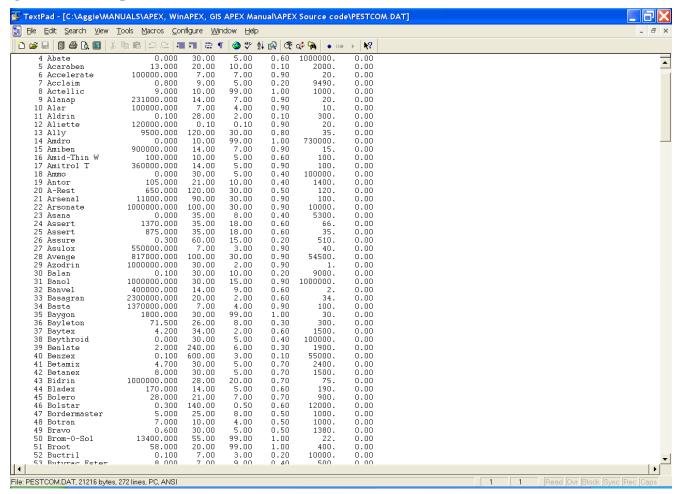

2.18 THE FERTILIZER FILE (FERT****.DAT)

The fertilizer file, **FERTCOM.DAT**, includes most common fertilizers and/or other nutrient materials used in agricultural management, one row per material.

Field	Variable	Description
LINES 1-N	FORMAT:	ONE (1) BLANK COLUMN FOLLOWED BY ONE (1) FIELD OF FOUR (4) COLUMNS (INTEGER)FOLLOWED BY ONE (1) BLANK COLUMN FOLLOWED BY ONE FIELD OF EIGHT (8) ALPHA CHARACTERS FOLLOWED BY TEN (10) FIELDS OF EIGHT (8) COLUMNS INCLUDING UP TO THREE (3)DECIMAL PLACES (FLOATING)
1	I	Fertilizer ID number (cols. 2-5)
2	FTNM	Fertilizer name. (cols. 7-14) A descriptive name that usually includes the N-P-K analysis or the type of manure.
3	FN	Mineral N fraction. (cols. 15-22) Fraction of nitrogen in the fertilizer which is in the mineral form.
4	FP	Mineral P fraction (cols. 23-30) Fraction phosphorus in the fertilizer which is in the mineral form.
5	FK	Mineral K fraction (cols. 31-38) Fraction of potassium in the fertilizer which is in the mineral form.
6	FNO	Organic N fraction (cols. 39-46) This applies to organic fertilizers such as manures. This number must be obtained from an analysis test of the product. The amount is reported as a fraction.
7	FPO	Organic P fraction (cols. 47-54) This applies to organic fertilizers such as manures. This number must be obtained from an analysis test of the product. The amount is reported as a fraction.
8	FNH3	Ammonia N fraction (cols. 55-62) The fraction of nitrogen in the fertilizer that is in the ammonia (NH ₃) form.
9	FOC	Organic C fraction (cols. 63-70) Organic carbon = organic matter / 1.72
10	FSLT	Salt fraction (cols. 71-78) Amount of salt in fertilizer

Field Variable Description 11 FCST Cost of Fertilizer (\$/kg) (cols. 79-86) Used for economic analyses only.

Figure 2.26: Sample Fertilizer file screen.

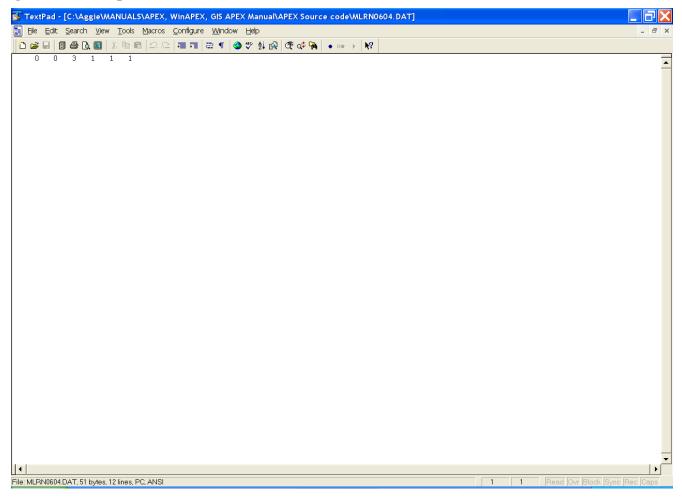


2.19 THE PESTICIDE FILE (PEST****.DAT)

The pesticide file, **PESTCOM.DAT**, includes most common pesticides in agricultural management.

Field	Variable	Description
LINES 1-N	FORMAT:	ONE(1) FIELD OF FIVE (5) COLUMNS (INTEGER) FOLLOWED BY ONE (1) BLANK COLUMN FOLLOWED BY ONE FIELD OF SIXTEEN (16) ALPHA CHARACTERS FOLLOWED BY ONE (1) FIELD OF TWELVE (12) COLUMNS INCLUDING DECIMAL PLACES (FLOATING) FOLLOWED BY THREE (3) FIELDS OF EIGHT (8) COLUMNS INCLUDING DECIMAL PLACES (FLOATING) FOLLOWED BY ONE (1) FIELD OF TEN (10 COLUMNS INCLUDING DECIMAL PLACES (FLOATING) FOLLOWED BY ONE (1) FIELD OF EIGHT (8) COLUMNS INCLUDING DECIMAL PLACES (FLOATING)
1	J1	Pesticide ID number (cols. 1-5)
2	PSTN	Pesticide name. (cols. 7-22) Common or brand name of the pesticide.
3	PSOL	Pesticide solubility in ppm. (cols. 23-34) The amount of the pesticide product which can dissolve in water. (ppm)
4	PHLS	Pesticide half life in soil in days. (cols. 35-42) The time that it takes for the pesticide product concentration in the soil to be reduced by half. (days)
5	PHLF	Pesticide half life in foliage in days. (cols. 43-50) The time that it takes for the pesticide product concentration on the foliage to be reduced by half. Degradation occurs through microbial activity and/or sunlight. (days)
6	PWOF	Pesticide wash off fraction. (cols. 51-58) Percentage of the pesticide product that is applied to foliage that is washed off into the soil. (%)
7	PKOC	Pesticide organic C absorption coefficient. (cols. 59-68) Amount of pesticide products attached to the soil divided by the amount of the pesticide product in solution, normalized by organic carbon % in the soil. Refer to Environmental Contaminant Toxicological Reviews 123:1-164.
8	PCST	Pesticide cost in \$/KG. (cols. 69-76) Used for economic analyses only.

Figure 2.27: Sample Pesticide file screen.


2.20 THE APEX MULTI-RUN FILE (MLRN****.DAT)

An APEX study may involve the analysis of consecutive weather seeds on wind and water erosion without reloading the model. That can be easily done with the multi-run option in APEX. The simulation continues until a zero NBYR is encountered.

FORMAT: UP TO TWENTY (20) FIELDS OF FOUR (4) COLUMNS PER FIELD (INTEGER)

Field	Variable	Description
1	NBYR	Number of years for second through the last simulation (cols. 1-4)
2	I1	 Normal/Static Soil Erosion (cols. 5-8) Normal erosion of soil profile Static soil profile erosion control practice factor
3	I2	1 Static soil profile erosion control practice factor Type of Output (cols. 9-12) 0 Annual watershed output
		1 Annual output 2 Annual with soil table 3 Monthly 4 Monthly with soil table 5 Monthly with soil table at harvest
		6 N days interval 7 Soil table only n day interval 8 Soil table only during growing season N day interval 9 N day interval during growing season
4	N2	 ID number for weather input variables. (cols. 13-16) 1 Precipitation 2 Temperatures 3 Radiation 4 Wind Speed 5 Relative Humidity
5	N3	Turns on .DWS file (cols. 17-20) .DWS is the Daily Watershed output file
6	N4	Turns on .MWS file (cols. 21-24) .MWS is the Monthly Watershed output file

Figure 2.28: Sample Multi-run file screen.

2.21 THE APEX PARM FILE (PARM****.DAT)

The **PARMCOM.DAT** file is a very sensitive part in APEX, because many coefficients of equations are maintained in this file. The equation coefficients **should not** be changed without consulting the model designer first.

This file contains definitions of s-curve and miscellaneous parameters used in APEX0604.

S-CURVE PARAMETERS

An S-shaped curve is used to describe the behavior of many processes in APEX. The y-axis is scaled from 0-1 to express the effect of a range in the x-axis variable on the process being simulated. The S-curve may be described adequately by two points contained in this file. It is convenient to represent the x and y coordinates of the two points with two numbers contained in this file. The numbers are split by APEX (the x-value is left of the decimal and the y-value is right of the decimal). The two points are contained in an array called SCRP. To illustrate the procedure, consider the two SCRP values in the first line of the PARM0604.DAT file (90.05,99.95). SCRP (1,1)=90.05, SCRP (1,2)=99.95. When split we have x1=90, y1=0.05, x2=99, and y2=0.95. APEX uses these two points to solve the exponential equation for two parameters that guarantee the curve originates at zero, passes through the two given points, and y approaches 1.0 as x increases beyond the second point. The form of the equation is

$$Y = x/[x+exp(b_1-b_2*x)]$$

where b_1 and b_2 are the APEX determined parameters.

S-CURVE PARAMETER DEFINITIONS

LINES 1-30 CONSIST OF TWO FIELDS (COLS. 1-8 AND COLS. 9-16) WITH ONE S-CURVE PAIR PER LINE.

FORMAT: TWO (2) FIELDS OF EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO THREE (3) DECIMAL PLACES (FLOATING)

SCRP1(1)	SCRP2(1)	Root growth restriction by rock or coarse soil fragments, The number to the left of the decimal is the % coarse fragments, and the number to the right of the decimal is the fraction of root growth restriction.
SCRP1(2)	SCRP2(2)	Soil evaporation – depth . Soil evaporation as a function of soil depth . The # to the left of decimal is depth (mm), and the number to the right is fraction of soil evaporation between soil surface and specified depth.
SCRP1(3)	SCRP2(3)	Potential harvest index. The # to the left of decimal is % of growing season, and the number to the right is fraction of harvest index (drives potential harvest index development as a function of crop maturity).

SCRP1(4)	SCRP2(4)	Runoff curve number. This is an exception to normal s-curve procedures. The # to the left of the decimal is soil water content, and the number to the right is curve number. Soil water fraction taken from SCRP(25,n) to match CN2 and CN3 (average and wet condition runoff curve numbers) THIS IS ALWAYS LEFT AT 0.0, 0.0. SCRP (4) IS CALCULATED BASED ON SCRP (25).
SCRP1(5)	SCRP2(5)	% Groundwater storage table. The # to the left of decimal is percent of groundwater storage and the number to the right is water table depth (meters).
SCRP1(6)	SCRP2(6)	Soil settling rainfall . The # to the left of decimal is rainfall-runoff adjusted for soil texture and depth (mm), and the number to the right of the decimal is soil settling fraction caused by rainfall.
SCRP1(7)	SCRP2(7)	Aeration stress – root growth . The # to the left of decimal is % of soil water storage volume between critical aeration factor and saturation, and the number to the right is % reduction in root growth caused by aeration stress. Determines the root growth aeration stress factor as a function of soil water content and the critical aeration factor for the crop.
SCRP1(8)	SCRP2(8)	N or P deficiency stress – based on plant N or P content. The # to the left of decimal is % of difference between plant N or P content ratios (ratio of actual potential N or P content). The number to the right is the N or P stress factor (=0.0 when N or P ratio = 0.5; = 1.0 when N or P ratio = 1). Determines the plant stress caused by N or P deficiency.
SCRP1(9)	SCRP2(9)	Pest damage – temp, water, cover. The # to the left of the decimal is average daily minimum temperature adjusted for soil cover and 30 day antecedent rainfall minus runoff. The number to the right is crop yield reduction by pests expressed as a fraction of the difference between 1.0 and the minimum pest factor (PST crop parameter). Calculates the pest damage factor as a function of temperature, considering thresholds for 30-day rainfall and above ground plant material. One of several parameters used to regulate pest growth. See also parm 9 and 10, PSTX in the control file, and PST in the crop file.
SCRP1(10)	SCRP2(10)	Harvest Index – Plant Water Use. The number to the left of the decimal is the % of actual to potential plant water use during the growing season. The # to the right is the fraction of actual to potential harvest index. Calculates the effect of water stress on harvest index as a function of plant water use.
SCRP1(11)	SCRP2(11)	P plant use – Soil P concentration. The # to the left of the decimal is the soil labile P concentration (PPM) and the number to the right is the P available in (kg/ha). Governs P use by plants as a function of soil P concentration.
SCRP1(12)	SCRP2(12)	N volatilization, as a function of NH3 depth in soil. The # to the left of the decimal is depth at the center of soil layer (mm) and the number to the right is the N volatilization in (kg/ha). Governs n volatilization as a function of soil depth.

SCRP1(13)	SCRP2(13)	Calculates wind erosion vegetative cover factor as a function of above ground plant material. X = vegetative equivalent (C1*BIOM+C2*STD+C3*RSD). Where C1, C2, and C3 are coefficients, BIOM is above ground biomass, STD is standing dead plant residue, and RSD is flat residue. The # to the left of decimal is vegetative equivalent in (T/ha) and the number to the right is wind erosion cover factor (fraction).
SCRP1(14)	SCRP2(14)	Calculates soil temperature factor used in regulating microbial processes . X = soil temperature(C). The # to the left of the decimal is soil temperature and the number to the right is factor (fraction).
SCRP1(15)	SCRP2(15)	Plant population in water erosion C-factor . The # to the left is plant population in plants per m ² or plants per ha for trees and the number to the right is the water erosion cover factor (fraction) or the fraction of erosion control.
SCRP1(16)	SCRP2(16)	Snowmelt function. Increases snow melt as a function of time since the last snowfall. The number to the left of the decimal is the time (days) since the last snowfall, and the number to the right of the decimal is the rate of melt as a function of time.
SCRP1(17)	SCRP2(17)	Component of the plant water stress factor based on soil water content. The number to the left of the decimal is the ratio of root zone soil water content to plant available water storage volume, and the number to the right of the decimal is the fraction of plant stress due to water stress. If Parm 38 = 1 then plant water stress is strictly a function of ET.
SCRP1(18)	SCRP2(18)	Adjusts CN2 as a function of upland slope steepness. The number to the left of the decimal is the upland slope (%), and the number to the right of the decimal is the fraction that the curve number is adjusted.
SCRP1(19)	SCRP2(19)	Regulates feedlot dust emission based on moisture content of litter. The number to the left of the decimal is the water in liter/weight of litter, and the number to the right of the decimal is the fraction of dust emission control
SCRP1(20)	SCRP2(20)	Simulates oxygen content of soil as a function of depth. Used in microbial processes of residue decay. The number to the left of the decimal is the depth to center of each soil layer (m) and the number to the right of the decimal is the adjustment to the oxygen content. This parameter works in conjunction with Parm 53. (1 – Parm 53) x SCRP20
SCRP1(21)	SCRP2(21)	Distance factor in spatial rainfall generator . The number to the left of the decimal is the distance from storm center to subarea centroid (km) and the number to the right of the decimal is the fraction of rainfall received at the storm center given distance X.
SCRP1(22)	SCRP2(22)	Soil Cover Factor – Soil Temperature . The number to the left of the decimal is the total above ground plant material dead and alive (T/ha) and the number to the right is the soil cover factor (fraction). Estimates soil cover factor used in simulating soil temperature.

SCRP1(23)	SCRP2(23)	Estimates plant ground cover as a function of leaf area . The number to the left of the decimal is the leaf area, and the number to the right of the decimal is the fraction of ground cover.
SCRP1(24)	SCRP2(24)	Estimates plant ground cover as a function of standing live biomass . The number to the left of the decimal is the standing live biomass (t/ha), and the number to the right of the decimal is the fraction of ground cover.
SCRP1(25)	SCRP2(25)	Simulates O ₂ content of the soil as a function of Carbon and Clay content. This S-curve number is used in microbial processes of residue decay. X = F(Carbon/Clay)
SCRP1(26)	SCRP2(26)	Not used
SCRP1(27)	SCRP2(27)	Not used
SCRP1(28)	SCRP2(28)	Not used
SCRP1(29)	SCRP2(29)	Not used
SCRP1(30)	SCRP2(30)	Exception to normal S-Curve procedure – sets soil water contents coinciding with CN2 and CN3. $X1 = soil$ water content as % of field capacity – wilting point; $X2 = soil$ water content as % of saturation – field capacity. THIS PARAMETER DOES NOT FOLLOW THE SAME X,Y FORMAT AS THE OTHER PARAMETERS. IN THIS CASE Y IS ALWAYS 0. EXAMPLE: $X1 = 45.00$; this indicates that CN2 is 45% of the volume between field capacity and wilting point $\rightarrow (0.45*(FC-WP) + WP)$. $X2 = 10.00$; this indicates that CN3 is 10% of the volume between saturation and field capacity $\rightarrow (0.10*(SAT-FC) + FC)$.

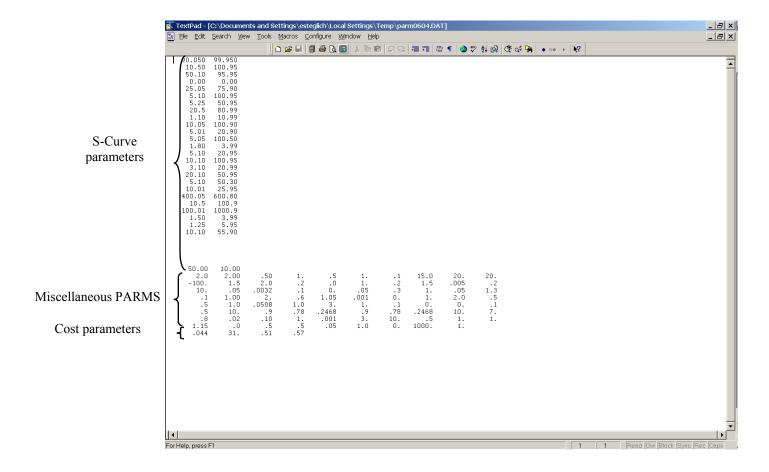
PARM DEFINITIONS

LINES 31-39 FORMAT: TEN (10) FIELDS OF EIGHT (8) COLUMNS PER FIELD INCLUDING UP TO TWO (2) DECIMAL PLACES (FLOATING)

Field	PARM(n)	Definition, units and/or range.
LINE 31		
1	1	Crop canopy-PET (Range is from 1 - 2) factor used to adjust crop canopy resistance in the Penman-Monteith PET equation. (cols. 1-8)
2	2	Root growth-soil strength (Range is from 1 - 2). Normally 1.15 <parm(2)<1.2. 1.5="" constraint="" growth.="" minimize="" on="" parm(2)="" root="" set="" setting="" soil="" strength="" to="">2 eliminates all root growth stress. (cols. 9-16)</parm(2)<1.2.>
3	3	Water stress-harvest index (Range is from 0 - 1) sets fraction of growing season when water stress starts reducing harvest index. (cols. 17-24)

Field	PARM(n)	Definition, units and/or range.
4	4	Water storage N leaching (Range is from 0 - 1) fraction of soil porosity that interacts with percolating water as nitrogen leaching occurs. (cols. 25-32)
5	5	Soil water lower limit (Range is from 0 - 1) lower limit of water content in the top 0.5 m soil depth expressed as a fraction of the wilting point water content. (cols. 33-40)
6	6	Winter dormancy (h) (Range is from 0 - 1) causes dormancy in winter grown crops. Growth does not occur when day length is less than annual minimum day length + parm(6). (cols. 41-48)
7	7	N fixation (Range is from 0 - 1) at 1, fixation is limited by soil water or nitrate content or by crop growth stage. At 0 fixation meets crop nitrogen uptake demand. A combination of the two previously described scenarios is obtained by setting 0 < parm(7) < 1. (cols. 49-56)
8	8	Soluble phosphorus runoff coefficient. (0.1m³/t), (Range is from 10 - 20). P concentration in sediment divided by that of the water. (cols. 57-64)
9	9	Pest damage moisture threshold , (mm), (Range is from 25 - 150), previous 30_day rainfall minus runoff. One of several parameters used to regulate pest growth. See also parm 10, PSTX in the control file, PST in the crop file and SCRP (9). (cols. 65-72)
10	10	Pest damage cover threshold , (t/ha), (Range is from 1 - 10), crop residue + above ground biomass. This is the amount of cover required for pests to begin to grow. Setting parm 10 at a large number (50) will result in little or no pest growth because it will be impossible to reach such high levels of cover. One of several parameters used to regulate pest growth. See also parm 9, PSTX in the control file, PST in the crop file and SCRP (9). (cols. 73-80)
LINE 32		
1	11	Moisture required for seed germination , (mm), (Range is from 10 - 30), soil water stored minus wilting point storage in the plow depth (plow layer depth = parm(43)). If the amount of moisture in the plow layer is not equal to or greater than Parm 11, germination will not occur. Setting this parm to a negative number such as (-100) essentially turns this parm off and the seed will germinate regardless of moisture amount in the soil. (cols. 1-8)
2	12	Soil evaporation coefficient , (Range is from 1.5 - 2.5), governs rate of soil evaporation from top 0.2 m of soil. (cols. 9-16)
3	13	Wind erodibility coefficient , (Range is from 0 - 3), adjusts wind soil erodibility factor downward as loose material is eroded. (cols. 17-24)
4	14	Nitrate leaching ratio , (Range is from 0.1 - 1), Ratio of nitrate concentration in surface runoff to nitrate concentration in percolate. (cols. 25-32)
5	15	Runoff CN weighting factor (Range is from 0.0 - 1.0). Weights current and previous day's CN. If 1.0, uses current estimate; if 0.0 Uses previous day's CN. (cols. 33-40)

Field	PARM(n)	Definition, units and/or range.
6	16	Expands CN retention parameter (Range is from 1.0 - 1.5). Values > 1.0 expand CN retention and reduce runoff. (cols. 41-48)
7	17	Soil evaporation – plant cover factor (Range is from 0.01 - 0.5). Reduces effect of plant cover as related to LAI in regulating soil evaporation. (cols. 49-56)
8	18	Sediment routing exponent (Range is from 1 - 1.5) exponent of water velocity function for estimating potential sediment concentration. (cols. 57-64)
9	19	Sediment routing coefficient , (t/m^3) (Range is from 0.01 - 0.05) potential sediment concentration when flow velocity = 1. (m/s) . $(cols. 65-72)$
10	20	Runoff curve number initial abstraction (Range is from 0.05 - 0.4) (cols. 73-80)
LINE 33		
1	21	Soluble Carbon adsorption Coefficient (0.1m³/t) (Range is from 10 - 20). Carbon concentration in sediment divided by that in water. (cols. 1-8)
2	22	Reduces NRCS Runoff CN Retention Parameter for Frozen Soil. (Range is from 0.05 – 0.5) Fraction of S (Retention Parameter) Frozen Soil (cols. 9-16)
3	23	Hargreaves PET equation coefficient (Range is from 0.0023 - 0.0032), original value = 0.0023, current value = 0.0032 (cols. 17-24)
4	24	Pesticide leaching ratio (Range is from 0.1 - 1) Ration of pesticide concentration in surface runoff to pesticide concentration in percolation. (cols. 25-32)
5	25	Exponential coefficient used to account for rainfall intensity on curve number (Range is from $0-2$). Setting this coefficient to 0 causes no effect. (cols. 33-40)
6	26	Fraction of maturity at spring growth initiation (Range is from 0 - 1) allows fall growing crops to reset heat unit index to a value greater than 0 when passing through the minimum temperature month. (cols. 41-48)
7	27	CEC effect on nitrification & volatilization (Range is from 0 - 1) sets lower limit of CEC correction factor in nit/vol function. At 0 CEC should prevent nit/vol process. At 1 CEC has no effect on nit/vol. (cols. 49-56)
8	28	Upper Nitrogen Fixation limit (Range is from 0.1 – 10) This value sets the upper daily limit of nitrogen fixation by legumes. (kg/ha/day) (cols. 57-64)
9	29	Biological mixing efficiency (Range is from 0.1 - 0.5) simulates mixing in top soil by earth worms etc. Parm (31) sets depth for this action. (cols. 65-72)
10	30	Soluble phosphorus runoff exponent (Range is from 1 - 1.5) provides nonlinear effect for soluble phosphorus-runoff eq. (cols. 73-80)


Field	PARM(n)	Definition, units and/or range.	
LINE 34			
1	31	Maximum depth for biological mixing, (m), (Range is from 0.1 - 0.3) (cols. 1-8)	
2	32	Organic N & P sediment transport exponent, (Range is from 1 - 1.2) (cols. 9-16)	
3	33	Coefficient in MUST EQ (Range is from $2.0 - 3.0$). Original value = 2.5 . (cols. 17-24)	
4	34	Hargreaves PET equation exponent (Range is from 0.5 - 0.6) original value=0.5. Modified to 0.6 to increase PET. (cols. 25-32)	
5	35	Denitrification soil-water threshold (Range is from 0.9 - 1.1), fraction of field capacity soil water storage to trigger denitrification. (cols. 33-40)	
6	36	Denitrification rate constant (Range is from 0.1 - 2) controls denitrification rate. Traditionally set at 1.4. (cols. 41-48)	
7	37	Crop Residue Runoff (Range is from $0-2$) Lowers runoff curve number as surface residue increases and raises CN as soil becomes bare. (cols. 49-56)	
8	38	Water stress weighting coefficient (Range is from 0 - 1) at 0 plant water stress is strictly a function of soil water content; at 1 plant water stress is strictly a function of actual ET divided by potential ET. 0 <parm (cols.="" (cols.)="" 17.="" 38<1="" 57-64)<="" also="" approaches.="" both="" considers="" scrp="" see="" td=""></parm>	
		Puddling Saturated Conductivity (mm/h) (Range is from 0.00001 – 0.1) Simulates puddling in rice paddies by setting second soil layer saturated conductivity to a low value. (cols. 65-72)	
10	40	Groundwater storage threshold (Range is from 0.001 - 1.) fraction of groundwater storage that initiates return flow. (cols. 73-80)	
LINE 35	<u> </u>		
1	41	Plant root temperature stress exponent (Range is from 0.1 - 2.) exponent of ratio of soil layer temperature to average of plant optimal and base temperatures. (cols. 1-8)	
2	42	SCS curve number index coefficient (Range is from 0.2 -2.5) regulates the effect of PET in driving the SCS curve number retention parameter. (cols. 9-16)	
3	43	Plow layer depth (m) used to track soluble phosphorus concentration or weight. (cols. 17-24)	
4 44 Upper Limit of Curve Number Retention Parameter S (Range is from 1 SUL=PARM(44)*S1. Allows CN to go below CN1. (cols. 25-32)		Upper Limit of Curve Number Retention Parameter S(Range is from 1 - 2.) SUL=PARM(44)*S1. Allows CN to go below CN1. (cols. 25-32)	
5 Sediment routing travel time coefficient , (Range is from 0. sediment concentration to transport capacity concentration as		Sediment routing travel time coefficient , (Range is from 0.5 - 10.) brings inflow sediment concentration to transport capacity concentration as a function of travel time and mean particle size. (cols. 33-40)	

Field	PARM(n)	Definition, units and/or range.
6	46	RUSLE C-factor coefficient (Range is from 0.5 - 1.5) coefficient in exponential residue function in residue factor. (cols. 41-48)
7	47	RUSLE C-factor coefficient (Range is from 0.5 - 1.5) coefficient in exponential crop height function in biomass factor. (cols. 49-56)
8	48	Adjusts climatic stress factor (Range is from 50 - 80) ((Average annual precipitation/Average annual temperature) / Parm 48). Setting parm 48 to 0.0 gives a Climatic factor = 1 which has no effect on crop yield (cols. 57-64)
9	49	Maximum rainfall interception by plant canopy (mm) (Range is from 2 - 15.) (cols. 65-72)
10	50	Rainfall interception coefficient, (Range is from 0.05 - 0.3) (cols. 73-80)
LINE 36		
1	51	Water stored in litter (residue) coefficient (Range is from 0.1 - 0.9). Fraction of litter weight. (cols. 1-8)
2	52	Exponential coefficient in EQUATION expressing tillage effect on residue decay rate (Range is from 5 - 15) (cols. 9-16)
3	53	Coefficient in oxygen EQUATION used in modifying microbial activity with soil depth (Range is from 0.8 - 0.95) See also SCRP 20. (cols. 17-24)
4	54	N enrichment ratio coefficient for routing (Range is from 0.4 - 0.9) (cols. 25-32)
5	55	N enrichment ratio exponent for routing (Range is from 0.1 - 0.3) (cols. 33-40)
6	56	Fraction destroyed by burn operation (Range is from 0.5 -1.0) (cols. 41-48)
7	57	P enrichment ratio coefficient for routing (Range is from 0.05 - 0.9) (cols. 49-56)
8	58	P enrichment ratio exponent for routing (Range is from 0.2 - 0.4) (cols. 57-64)
9	59	P upward movement by evaporation coefficient (Range is from 1 - 20) (cols. 65-72)
10	60	Maximum number of days a pasture is grazed before rotation (Range is from 1 - 365) (cols. 73-80)
LINE 37	1	
1	61	Soil water tension weighting factor (Range is from 0 - 1.) regulates upward water flow as a function of soil water tension in the layer of interest and the one above it. 0.0 only considers above layer tension. 1.0 only considers layer of interest's tension. (cols. 1-8)

Field	PARM(n)	Definition, units and/or range.
2	62	Manure erosion equation coefficient , (Range is from 0.1 - 0.5) larger values increase manure erosion. (cols. 9-16)
3	63	Pesticide loss coefficient , (Range is from 0.1 - 1.0) fraction of porosity interacting with pesticides as water flows through a soil layer. (cols. 17-24)
4	64	Dust distribution coefficient , (Range is from 0.5 - 1.5) affects downwind travel time. (cols. 25-32)
5	65	RUSLE2 transport capacity parameter (Range is from 0.001 - 0.1) Regulates deposition as a function of particle size and flow rate. (cols. 33-40)
6	66	RUSLE2 threshold transport capacity coefficient (Range is from 1.0-10.0) Adjusts threshold (FLOW RATE * SLOPE STEEPNESS) (cols. 41-48)
7	67	Dust distribution dispersion exponent (Range is from 5.0 - 15.0) modifies the effect of the angle between the wind direction and the centroid of downwind subareas. (cols. 49-56)
8	68	Manure erosion exponent t (Range is from 0.1 - 1.0) modifies equation based on weight of manure on soil surface. (cols. 57-64)
9	69	Coefficient adjusts microbial activity function in the top soil layer, (Range is from 0.1 - 1). (cols. 65-72)
10	70	Microbial decay rate coefficient (Range is from 0.5 - 1.5). Adjusts soil water-temperature-oxygen equation. (cols. 73-80)
LINE 38		
1	71	Manure erosion coefficient (Range is from 1.0 -1.5). Modifies erosion estimate based on above ground plant material. Plant material (live and dead) reduces manure erosion. (cols. 1-8)
2	72	Volatilization/nitrification partitioning coefficient (Range is from 0.05 - 0.5). Fraction of process allocated to volatilization. (cols. 9-16)
3	73	Hydrograph development parameter (Range is from 0.1 - 0.9). Storage depletion routing exponent used to estimate travel time outflow relationship. (cols. 17-24)
4	74	Partitions Nitrogen flow from groundwater (Range is from 0 - 1) Parm 74 = NCH/NCV. RSFN = RSSF*NCH; DPKN = DPRK*NCV. NCH = horizontal nitrogen concentration; NCV = vertical nitrogen concentration; RSFN = Subarea soluble N yield in return flow; RSSF = Return subsurface flow; DPKN = Soluble N in deep percolation; DPRK = Deep percolation (cols. 25-32)
5	75	Furrow irrigation erosion coefficient (t/m^3) (Range is from 0.01 - 0.05). Potential sediment concentration in a furrow when flow velocity = 1. (m/s). (cols. 33-40)

Field	PARM(n)	Definition, units and/or range.	
6	76	Furrow irrigation sediment routing exponent (Range is from 1 - 1.5). Exponent of water velocity function for estimating potential sediment concentration. (cols. 41-48)	
7	77	Runoff amount to delay pest application (mm) (Range is from $0-25$). Pesticide is not applied on days with runoff greater than Parm 77. (cols. 49-56)	
8	78	Soil water value to delay tillage (Range is from $0-1$) Tillage is delayed when PDSW/FCSW>Parm 78. PDSW = Plow depth soil water content; FCSW = Field capacity soil water content. (cols. 57-64)	
9	79	Auto mow lower limit (t/ha) (Range is from $0.2 - 3.0$) This parameter will prevent auto mowing by setting the above ground plant material that must be present in order for the model to allow auto mowing to occur. If the amount of above ground plant material is less than or equal the value set for Parm 79, the model will not allow auto mowing to occur until the amount of plant material is greater then Parm 79. (cols. 65-72)	
10	80	Not used (cols. 73-80)	
LINE 39:	COST PAR	AMETERS	
1	COIR	Cost of Irrigation Water (\$/mm) (cols. 1-8)	
2	COL	Cost of Lime (\$/tonne) (cols. 9-16)	
3	FULP	Cost of Fuel (\$/liter) (cols. 17-24)	
4	WAGE	Cost of Labor (\$/hour) (cols. 25-32)	

Figure 2.29: Sample PARM file screen

2.22 THE PRINT FILE (PRNT****.DAT)

The file PRNTCOM.DAT controls printing of output (see also IPD in APEXCONT.DAT): The PRNTCOM.DAT can be edited with the "UTIL PRNT" command. The user can select output variables from the list in or by pressing the F1 key in UTIL. The simulated output and summary files are numerous and some output variables are repeated in several files (see KFL below).

LINES 1-11 FORMAT: TWENTY (20) FIELDS OF FOUR (4) COLUMNS PER FIELD (INTEGER)

LINE 1-3: KA Output variable ID number (accumulated and average values).

Select up to 60 items from table below (See Table 2.9)

- Right justified
- 4 spaces each
- 20 per line
- Select by number
- Leave blank for standard output
- Enter -1 to omit all concentration variables

LINE 4: JC Output variable ID number (concentration variables).

Select up to 4 variables from table below, e.g.:

38 QN N03 loss in runoff 39 SSFN NO3 in subsurface flow

40 PRKN NO3 leaching 49 QP P loss in runoff

- Right justified
- 4 spaces each
- Select by number
- Leave blank for standard output
- Enter -1 to omit all concentration variables

LINE 5: KS Output variable ID (monthly state variables).

1 ZNMA

Select up to 17 variables from this list (input number):

1	21 11111	Williera IV ill IVIIS Ioini ill Ioot Zone (kg/ila)
2	ZNMN	Mineral N in NO3 form in root zone (kg/ha)
3	ZPML	Mineral P in labile form in root zone (kg/ha)
4	· UNM	Plant N uptake (kg/ha)
5	UPM	Plant P uptake (kg/ha)
6	RZSW	Soil water content in root zone (mm)
7	WTBL	Water table depth (m)
8	GWST	Ground water storage (mm)
9	STDO	Standing dead plant residue from old crops (t/ha)
10	RSD	Crop residue on the soil surface and below (t/ha)

Mineral N in NH3 form in root zone (kg/ha)

11 RSVQ	Reservoir storage (mm)
12 RSVY	Sediment contained in reservoir (t/ha)
13 RSSA	Reservoir surface area (ha)
14 SWLT	Water content of surface litter (mm)
15 SNO	Water content of snow (mm)
16 RSDM	Manure present on soil surface and below (t/ha)
17 GWSN	N contained in ground water (kg/ha)

- Right justified
- 4 spaces each
- Select by number
- Leave blank for standard output
- Enter -1 to omit all concentration variables

LINE 6-7: KD Output variable ID (daily output variables).

Select variables from the standard table below (Table 2.9)

- Up to 40 variables
- Right justified
- 4 spaces each
- 20 per row
- Select by number

LINE 8-9: KY Annual output variable ID (accumulated and average values).

Select variables from the standard table (Table 2.9) below

- Up to 40 variables
- Right justified
- 4 spaces each
- 20 per row
- Select by number

Table 2.9: List of Output Variables the User can choose from.

Variable #	Variable Name	Variable Description	Units
1	TMX	Maximum temperature	$^{0}\mathrm{C}$
2	TMN	Minimum temperature	°C
3	SRAD	Solar Radiation	MJ/m^2
4	PRCP	Precipitation	mm
5	SNOF	Snow fall	mm
6	SNOM	Snow melt	mm
7	WSPD	Wind velocity	m/s
8	RHUM	Relative humidity	
9	VPD	Vapor pressure deficit	kPa

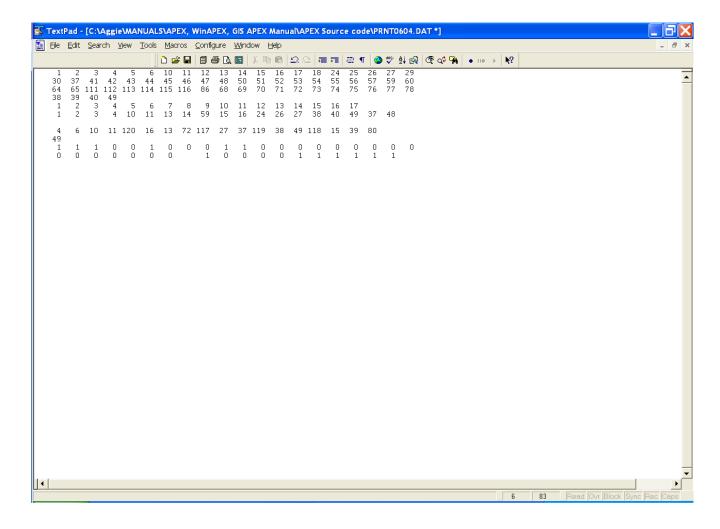
10	PET	Potential evaporation	mm
11	ET	Evapotranspiration	mm
12	EP	Transpiration	mm
13	Q	Annual Surface Runoff	mm
14	CN	SCS runoff curve number	111111
	SSF	Lateral subsurface flow	
15			m
16	PRK	Percolation below the root zone	mm
17	QDR	Flow from a drainage system	mm
18	IRGA	Irrigation water applied	mm
19	QIN	Inflow to the root zone from the water table	mm
20	TLGE	Lagoon evaporation	mm
21	TLGW	Water wash to lagoon	mm
22	TLGQ	Runoff to lagoon	mm
23	TLGF	Lagoon overflow	mm
24	EI	Rainfall energy factor	
25	C	Average water erosion/crop management factor	
26	USLE	Soil loss from water erosion using USLE	t/ha
27	MUSL	Soil loss from water erosion using MUSLE	t/ha
28	AOF	Soil loss from water erosion using Onstad-Foster	t/ha
29	MUSS	Soil erosion-water	t/ha
30	MUST	Soil loss from water erosion using modified MUSLE	t/ha
31	MUSI	Soil loss from water erosion using mod. MUSLE	t/ha
32	WK1	Wind erosion soil erodibility factor	
33	RHTT	Ridge Height	mm
34	RRUF	Random roughness of soil	
35	RGRF	Wind erosion ridge roughness factor	
36	YWND	Soil erosion –wind	t/ha
37	YN	Sediment transported N from subarea or reach	kg/ha
38	QN	Nitrogen in runoff	kg/ha
39	SSFN	Amount of mineral nitrogen lost in the horizontal movement of water in the soil from subarea or reach	kg/ha
40	PRKN	Mineral N loss in percolate	kg/ha
41	GMN	Nitrogen mineralized	kg/ha kg/ha
42	DN	N loss by denitrification	kg/ha kg/ha
43	NFIX	N fixed by leguminous crops	kg/ha
44	NMN	N mineralized from stable organic matter	kg/ha
45	NITR	Nitrification	kg/ha
46	AVOL	Nitrogen volatilitization	kg/ha
47	QDRN	Soluble N in drainage outflow`	kg/ha
48	YP	P loss with sediment	kg/ha kg/ha
49	QP	Phosphorus in runoff	kg/ha kg/ha
50	MNP	P mineralized	kg/ha
51	PRKP	Phosphorus loss in percolate	kg/ha
52	ER	Enrichment ratio	ng/11a
			ka/ha
53	FNO	Organic Nitrogen fertilizer (animal waste)	kg/ha

54	FNMN	Nitrate N fertilizer	kg/ha
55	FNMA	Ammonium N fertilizer	kg/ha
56	FPO	Organic Phosphorus (actual P) of manure	kg/ha
57	FPL	Mineral P fertilizer applied	kg/ha
58	LIME	Limestone applied (CaCO3 equivalent)	t/ha
59	TMP	Temperature in second soil layer	°C
60	SW10	Ratio soil water/wilting point in top 10mm	
61	LGMI	Manure input to lagoon	kg/ha
62	LGMO	Manure output from lagoon	kg/ha
63	EPP	Potential plant evaporation	mm
64	RSQI	Reservoir inflow	mm
65	RSQO	Reservoir outflow	mm
66	RSEV	Reservoir volume	mm
67	RSLK	Reservoir leakage (goes into ground water)	mm
68	RSYI	Reservoir sediment inflow	tonne
69	RSYO	Reservoir sediment outflow	tonne
70	RSYD	Reservoir sediment deposition	tonne
71	DPRK	Deep percolation	mm
72	RSSF	Return subsurface flow	mm
73	RSDC	carbon contained in crop residue	kg/ha
74	RSPC	CO2 respiration	kg/ha
75	PRKC	Carbon leached from root zone	kg/ha
76	QC	Carbon in runoff	kg/ha
77	YC	Carbon loss with sediment	kg/ha
78	RSDA	Residue added in any form	t/ha
79	QFP	Amount of flow into floodplain	mm
80	RSFN	Subarea soluble N yield in return flow	kg/ha
81	MAP	manure applied to subarea	kg/ha
82	BUNL	N burn loss	kg/ha
83	QRF	Quick return flow	mm
84	QRFN	Soluble N in quick return flow	kg/ha
85	RFIC	Rainfall interception	mm
86	RSBK	Reservoir back water	mm
87	CPVH	Pipe flow horizontal	mm
88	YMNU	Manure erosion	kg/ha
89	SNOU	N in scraping manure	kg/ha
90	SPOU	P in scraping manure	kg/ha
91	DNMO	Deposition of mineral N at watershed outlet	kg/ha
92	DPMO	Deposition of mineral P at watershed outlet	kg/ha
93	DEMR	Dust emission rate	kg/ha
94	P10D	Dust emission with <10 micron particle size	kg/ha
95	SSFI	Subsurface flow from subarea above	m
96	GWLN	N leaching from ground water	kg/ha
97	CPVV	Pipeflow vertical	mm
98	FPF	Floodplain infiltration	mm/h

99	FOC	Organic C fraction in fertilizer	
100	RFV	Precipitation	mm
101	SCOU	Carbon in manure scraped from feedlot	kg/ha
102	DEPC	Carbon deposited in routing reach	kg/ha
103	DECR	Residue decay	t/ha
104	PSOQ	Point source flow volume	mm
105	PSON	Point source soluble N load	kg/ha
106	PSOP	Point source soluble P load	kg/ha
107	RUSL	Soil erosion by water estimated with RUSLE	t/ha
108	QPU	Soluble P reach outflow of manure	kg/ha
109	FALF	Leaf fall	kg/ha
110	IRDL	Irrigation Distribution loss	mm
111	QRP	Reservoir release rate	mm/day
112	YRP	Sediment outflow from reservoir	t/ha/day
113	YNRP	Particulate N in reservoir outflow	kg/ha
114	YPRP	Particulate P in reservoir outflow	kg/ha
115	QNRP	Soluble N outflow from ponds	kg/ha
116	QPRP	Soluble P outflow from ponds	kg/ha
117	WYLD	Water yield	mm
118	YPM	Total mineral phosphorus loss	kg/ha
119	YPO	Total organic phosphorus loss	kg/ha
120	SW	Soil water in total profile	mm
121	PSOY	Point source sediment pesticide load	t/day
122	PQPS	Point source soluble pesticide load	g/day
123	PYPS	Point source adsorbed pesticide load	g/day
124	MUSI	Soil erosion by water estimated with Modified MUSLE	t/ha

LINE 10- KFL **11:**

Output table selection


0 gives no output, KFL > 0 gives output for selected files; there are 33 possible output files, this line has 20 variable fields, 4 columns wide. So for a desired file, enter a 1, right justified, in the appropriate variable space. For example:

prints file # 1, 9, 16, and 20 from the following file list.

Files names are *runname*.* where *runname* refers to run # (ASTN) and * takes on file name ext.

OUT	STANDARD OUTPUT FILE
MAN	SPECIAL MANURE MANAGEMENT SUMMARY FILE
SUS	SUBAREA SUMMARY FILE
ASA	ANNUAL SUBAREA FILE
SWT	WATERSHED OUTPUT TO SWAT
DPS	DAILY SUBAREA PESTICIDE FILE
MSA	MONTHLY SUBAREA FILE
SOT	SUBAREA FINAL SOIL TABLE FOR USE OTHER RUNS
DHY	DAILY SUBAREA HYDROLOGY FILE
WSS	WATERSHED SUMMARY FILE
SAD	DAILY SUBAREA FILE
	OPEN
DRS	DAILY RESERVOIR FILE
APEXBUF	COUT SPECIAL FILE NOT OPTIONAL
MWS	MONTHLY WATERSHED FILE
DWS	DAILY WATERSHED OUTLET FILE
AWS	ANNUAL WATERSHED OUTLET FILE
DGZ	DAILY GRAZING
DUX	DAILY MANURE APPLICATION
DDD	DAILY DUST DISTRIBUTION
ACN	ANNUAL SOIL ORGANIC C & N TABLE
DCN	DAILY SOIL ORGANIC C & N TABLE
SCX	SUMMARY SOIL ORGANIC C & N TABLE
ACY	ANNUAL SUBAREA CROP YIELD
EFR	RUNOFF EVENT FLOOD ROUTING
EHY	RUNOFF EVENT HYDROGRAPHS
APS	ANNUAL PESTICIDE
MSW	MONTHLY OUTPUT TO SWAT
DPW	DAILY WATERSHED PESTICIDE FILE
SPS	PESTICIDE SUBAREA SUMMARY
ACO	ANNUAL COST
SWN	SPECIAL WATERSHED SUMMARY FOR NRCS FARM
	PLANNING
FSA	SPECIAL ANNUAL SUBAREA FSA
SUB	SPECIAL SUBAREA FILE FOR GIS
RCH	SPECIAL REACH FILE FOR GIS
	OUT MAN SUS ASA SWT DPS MSA SOT DHY WSS SAD DRS APEXBUF MWS DWS AWS DGZ DUX DDD ACN DCN SCX ACY EFR EHY APS MSW DPW SPS ACO SWN FSA SUB RCH

Figure 2.30: Sample Print file screen.

2.23 THE HERD FILE (HERD****.DAT)

Each herd is identified with a particular owner. Each owner is allowed up to 10 herds. Within HERD0604.DAT each line identifies the characteristics of a particular herd. At the end of the herd file (listing of herds), the user has the option to also identify buy/sell data for particular herds. If animals from herds are not bought/sold, then this information is left blank

The following variables are required for the model. If grazing is not simulated, add a blank line or a zero line to the top of the HERD0604.DAT file. The model reads each line and looks at the owner to see if it is non-zero. When it comes to a blank or zero line it stops reading. This allows a user to have a herd file set up, but if the user decides to only simulate crops and not include grazing, he or she can do this without compromising all of the data that has already been entered for the owners and herds in the HERD0604.DAT file. Another option is to use the HERD0.DAT file in place of the HERD0604.DAT file only contains a zero line.

FORMAT: ONE (1) FIELD OF FOUR (4) COLUMNS (INTEGER) FOLLOWED BY SIX (6) FIELDS OF EIGHT (8) COLUMNS INCLUDING UP TO THREE (3) DECIMAL PLACES (FLOATING)

Field	Variable	Description
1	IDON	Owner identification number (cols. 1-4)
2	NCOW	Number of Cows in herd (cols. 5-12) This is the number of cows (animal units) in herd N owned by owner N
3	IDMU	Manure ID number from FERTCOM.DAT (cols. 13-20) This number identifies the type of manure being deposited on the soil surface by herd N owned by owner N
4	FFED	Fraction of day (24 hours) that herd is in feeding area (cols. 21-28) This is the fraction of the day that herd N owned by owner N is in the feeding area and not grazing on pasture.
5	GZRT	Daily Grazing rate per animal unit (cols. 29-36) This refers to the amount of forage the animal is capable of grazing in one day. It is expressed in kg per head per day. This number is then multiplied by NCOW to determine the amount the entire herd grazes on a daily basis.
6	DUMP	Daily manure production per animal unit (cols. 37-44) This refers to the amount of manure produced by each animal in the herd each day. It is expressed in kg/d
7	VURN	Daily Urine production per animal unit (cols. 45-52) This refers to the amount of urine produced by each animal in the herd each day. It is expressed in liters per head per day.

The following variables are optional. If animals are bought/sold, then the following variables must be added to the HERD0604.DAT file at the end of the herd listing. Animals of any particular herd may be bought/sold multiple times throughout the year simply by adding multiple lines with the appropriate dates to the following data.

A blank line must be added between the herd data (above variables) and the following data. This indicates to the model that it has reached the end of the herd characteristic data and anything below the blank line indicates buy/sell data.

FORMAT: UP TO TWENTY (20) FIELDS OF FOUR (4) COLUMNS PER FIELD (INTEGER)

Field	Variable	Description
1	IOW	Owner number (cols. 1-4) This is the number that identifies the owner.
2	IHD	Herd number (cols. 5-8) This number identifies the herd. In the listing of the herds above it is assumed that the first herd listed for owner N is identified as herd 1 and the tenth herd listed for owner N is herd 10. (Range: 1-10)
3	I1	Year of buy/sell (cols. 9-12) This is the year the animals were bought or sold.
4	I2	Month of buy/sell (cols. 13-16) This is the month the animals were bought or sold.
5	13	Day of buy/sell (cols. 17-20) This is the day of the month the animals were bought or sold.
6	I4	Number of animals in herd after buy/sell. (cols. 21-24) The model compares this number to the value of NCOW previously set for the herd and determines if animals were bought or sold. If I4 > NCOW, then animals were bought. If I4 < NCOW, then animals were sold. NCOW then takes on the value of I4. If animals from a particular herd are bought/sold numerous times per year, each time the animals are bought/sold NCOW increases/decreases to reflect that change.

Figure 2.31: Sample HERD0604 file screen

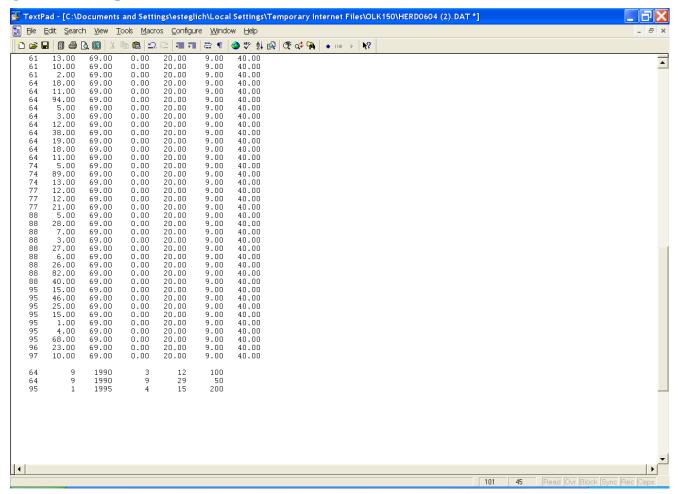
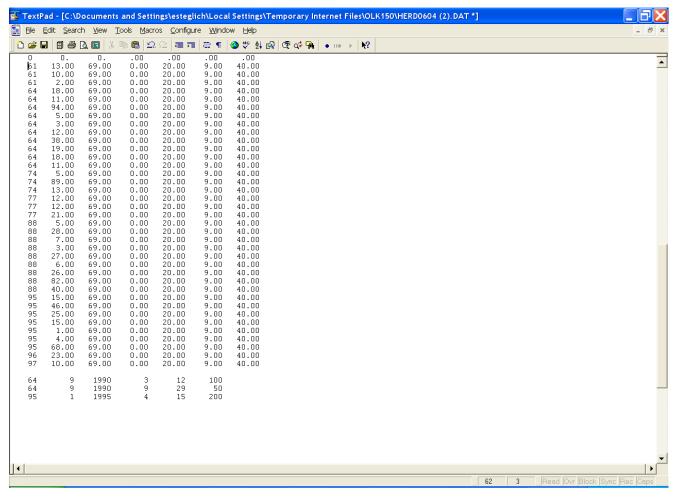



Figure 2.32: Sample HERD0604 file screen with "Zero" line to disable grazing simulation.

CHAPTER 3

OUTPUT DATA VARIABLES

3.1 *.ASA – ANNUAL SUBAREA FILE

SA# SUBAREA NUMBER ASSIGNED BY COMPUTER

ID# SUBAREA ID NUMBER INPUT BY USER

YR YEAR DATE

YR# YEAR NUMBER(1-NBYR) PRCP PRECIPITATION (MM)

P10D DUST EMISSION WITH <10 MICRON PARTICLE SIZE (KG/HA)

ET EVAPOTRANSPIRATION (MM)
Q ANNUAL SURFACE RUNOFF (MM)
CN SCS RUNOFF CURVE NUMBER
SSF LATERAL SUBSURFACE FLOW (MM)

PRK PERCOLATION BELOW THE ROOT ZONE (MM)
QDR FLOW FROM A DRAINAGE SYSTEM (MM)
YC CARBON LOSS WITH SEDIMENT (KG/HA)

C CROP COVER FACTOR

MUSS SOIL EROSION-WATER (T/HA) YWND SOIL EROSION-WIND (T/HA) IRGA IRRIGATION WATER APPLIED (MM)

RSDA CROP RESIDUE ADDED AT HARVEST (T/HA)

YMNU MANURE EROSION (KG/HA)

QN SOLUBLE NITROGEN YIELD (KG/HA)

SSFN MINERAL NITROGEN LOSS IN LATERAL SUBSURFACE FLOW FROM

SUBAREA OR REACH (KG/HA)

PRKN MINERAL NITROGEN LOSS IN PERCOLATE (KG/HA)

QDRN DRAIN TILE FLOW (MM)

QRFN SOLUBLE NITROGEN IN QUICK RETURN FLOW (KG/HA)

QP SOLUBLE PHOSPHORUS YIELD (KG/HA)

DNMO DEPOSITION OF MINERAL NITROGEN AT WATERSHED OUTLET

(KG/HA)

3.2 *.AWS – ANNUAL WATERSHED OUTLET FILE

YR YEAR DATE

PRCP PRECIPITATION (MM)

QSS SUM OF SURFACE RUNOFF FROM ALL SUBAREAS (MM)

QSW WATERSHED OUTFLOW--SURFACE RUNOFF COMPONENT (MM)

OTS SUM OF TOTAL FLOW FROM ALL SUBAREAS (MM)

QTW WATERSHED OUTFLOW (MM)

YS SUM OF SEDIMENT YIELD FROM ALL SUBAREAS (T/HA)

YW WATERSHED SEDIMENT YIELD (T/HA)

YNS SUM OF SEDIMENT TRANSPORTED N FROM ALL SUBAREAS (KG/HA)

YNW WATERSHED YIELD OF SEDIMENT TRANSPORTED N (KG/HA)

YPS SUM OF SEDIMENT TRANSPORTED P FROM ALL SUBAREAS (KG/HA)

YPW WATERSHED YIELD OF SEDIMENT TRANSPORTED P (KG/HA) QNS SUM OF SOLUBLE N YIELD FROM ALL SUBAREAS (KG/HA)

QNW WATERSHED SOLUBLE N YIELD (KG/HA)

QPS SUM OF SOLUBLE P YIELD FROM ALL SUBAREAS (KG/HA)

QPW WATERSHED SOLUBLE P YIELD (KG/HA)

YMUS SUM OF MANURE YIELD FROM ALL SUBAREAS (T/HA)

YMUW WATERSHED MANURE YIELD (T/HA)

QPUS SUM OF SUBAREA SOLUBLE PHOSPHORUS IN MANURE (KG/HA)
OPUW SOLUBLE PHOSPHORUS YIELD IN MANURE FROM WATERSHED

(KG/HA)

YCS CARBON TRANSPORTED BY SEDIMENT (SUM OF SUBAREAS) (KG/HA)
YCW CARBON TRANSPORTED BY SEDIMENT (FROM WATERSHED OUTLET)

(KG/HA)

3.3 *.MAN – SPECIAL MANURE MANAGEMENT SUMMARY FILE

PART 1 AVERAGE ANNUAL VALUES

SA# SUBAREA NUMBER ASSIGNED BY COMPUTER

ID# SUBAREA ID NUMBER INPUT BY USER

OWN# SUBAREA OWNER NUMBER

CROP CROP NAME

YLD1 GRAIN, FIBER, ETC CROP YIELD (T/HA)

YLD2 FORAGE CROP YIELD (T/HA)

YLN N HARVESTED WITH CROP (KG/HA) YLP P HARVESTED WITH CROP (KG/HA)

COW NUMBER OF COWS RESIDING ON THIS SUBAREA

WSA AREA OF SUBAREA (HA)

Q SURFACE RUNOFF FROM SUBAREA (MM)
Y SEDIMENT YIELD FROM SUBAREA (T/HA)
QP SOLUBLE P YIELD FROM SUBAREA (KG/HA)

YP SUBAREA SEDIMENT TRANSPORTED P YIELD (KG/HA)
ON SUBAREA SOLUBLE N YIELD CONTAINED IN SURFACE

RUNOFF (KG/HA)

SSFN SUBAREA SOLUBLE N YIELD IN SUBSURFACE FLOW (KG/HA)
RSFN SUBAREA SOLUBLE N YIELD IN RETURN FLOW (KG/HA)
PRKN SUBAERA SOLUBLE N LEACHED FROM SOIL PROFILE

(KG/HA)

YN SUBAREA SEDIMENT TRANSPORTED N YIELD (KG/HA)

FP P FERTILIZER APPLIED TO SUBAREA (KG/HA)
FN N FERTILIZER APPLIED TO SUBAREA (KG/HA)
MAP MANURE APPLIED TO SUBAREA KG/HA)
APO INITIAL PLOW DEPTH(PARM(43) SOLUBLE P

CONCENTRATION (G/T)

APF FINAL PLOW DEPTH(PARM(43) SOLUBLE P CONC (G/T)

CSP AVERAGE CONC OF SOLUBLE P IN SURFACE

PART 2

OWN ID OWNER ID NUMBER

AREA OWNED BY OWNER(HA)
MAP MANURE APPLIED (T/HA/YR)

PART 3 MANURE BALANCE

BALANCE MANURE BALANCE (T)

PROD TOTAL MANURE PRODUCED (T)

APPL TOTAL MANURE APPLIED TO LAND (T)
FINAL SMNU ST FINAL SOLID MANURE IN STOCK PILE (T)
FINAL SMNU FA FINAL SOLID MANURE IN FEED AREA (T)

YMNU TOTAL MANURE EROSION (T)

MINERALIZED TOTAL MANURE MINERALIZED (T) LIQ MAN APPL TOTAL LIQUID MANURE APPLIED (T)

LAGOON ST INITIAL INITIAL MANURE STORED IN LAGOONS (T) LAGOON ST FINAL FINAL MANURE STORED IN LAGOONS (T)

COMM FERT APPL N TOTAL COMMERCIAL NITROGEN FERTILIZER APPLIED (T)
COMM FERT APPL P TOTAL COMMERCIAL PHOSPHORUS FERTILIZER APPLIED (T)

3.4 *.DPS - DAILY SUBAREA PESTICIDE FILE

SA# SUBAREA NUMBER

SA ID SUBAREA ID Y YEAR DATE M MONTH DATE D DAY DATE

RFV0 PRECIPITATION (MM)
Q SURFACE RUNOFF (MM)

SSF TOTAL SUBSURFACE FLOW (MM)

YSD SEDIMENT YIELD (T/HA)

PSTN PESTICIDE NAME

PAPL PESTICIDE APPLIED (G/HA) PSRO PESTICIDE IN RUNOFF (G/HA)

PLCH PESTICIDE IN PERCOLATE FROM ROOT ZONE (G/HA)

PSSF PESTICIDE IN SUBSURFACE FLOW (G/HA)

PSED PESTICIDE TRANSPORTED BY SEDIMENT (G/HA)
PDGF PESTICIDE DEGRADATION FROM FOLIAGE (G/HA)
PDGS PESTICIDE DEGRADATION FROM SOIL (G/HA)

PFOL PESTICIDE BIODEGRADED ON FOLIAGE SURFACE (END OF MONTH)

(G/HA)

PSOL PESTICIDE BIODEGRADED IN SOIL (END OF MONTH) (G/HA)

PDRN PESTICIDE IN DRAINAGE SYSTEM OUTFLOW (G/HA)

3.5 *.WSS – WATERSHED SUMMARY FILE

PART 1 TOTAL WATERSHED AVERAGE ANNUAL VALUES BY MONTH

PRCP PRECIPITATION (MM)

QSS WEIGHTED SUM BY AREA OF ALL SUBAREAS OF SURFACE RUNOFF (MM)

OSW WATERSHED OUTFLOW--SURFACE RUNOFF COMPONENT (MM)

QTS SUM OF TOTAL FLOW FROM ALL SUBAREAS (MM)

QTW WATERSHED OUTFLOW (MM)

YS SUM OF SEDIMENT YIELD FROM ALL SUBAREAS (T/HA)

YW WATERSHED SEDIMENT YIELD (T/HA)

YNS SUM OF SEDIMENT TRANSPORTED N FROM ALL SUBAREAS (KG/HA)

YNW WATERSHED YIELD OF SEDIMENT TRANSPORTED N (KG/HA)

YPS SUM OF SEDIMENT TRANSPORTED P FROM ALL SUBAREAS (KG/HA)

YPW WATERSHED YIELD OF SEDIMENT TRANSPORTED P (KG/HA) QNS SUM OF SOLUBLE N YIELD FROM ALL SUBAREAS (KG/HA)

QNW WATERSHED SOLUBLE N YIELD (KG/HA)

QPS SUM OF SOLUBLE P YIELD FROM ALL SUBAREAS (KG/HA)

QPW WATERSHED SOLUBLE P YIELD (KG/HA)

YMUS SUM OF MANURE YIELD FROM ALL SUBAREAS (T/HA)

YMUW WATERSHED MANURE YIELD (T/HA)

QPUS SUM OF SUBAREA SOLUBLE PHOSPHORUS IN MANURE (KG/HA)

QPUW SOLUBLE PHOSPHORUS YIELD IN MANURE FROM WATERSHED (KG/HA)
YCS CARBON TRANSPORTED BY SEDIMENT (SUM OF SUBAREAS) (KG/HA)
YCW CARBON TRANSPORTED BY SEDIMENT (FROM WATERSHED OUTLET)

(KG/HA)

PART 1 SUBAREA SUMMARY

CMD ROUTING COMMAND NAME
ID# ROUTING COMMAND NUMBER

SA# SUBAREA NUMBER ASSIGNED BY COMPUTER

ID# SUBAREA ID NUMBER INPUT BY USER

WSA AREA OF SUBAREA OR REACH OUTLET (HA)

Q SURFACE RUNOFF FROM SUBAREA OR REACH OUTLET (MM) SSF SUBSURFACE FLOW FROM ONE SUBAREA TO ANOTHER (MM)

QRF QUICK RETURN FLOW (MM)

QDR FLOW FROM A DRAINAGE SYSTEM (MM)

RTF RETURN FLOW FROM GROUNDWATER STORAGE (MM)

Y SEDIMENT YIELD FROM SUBAREA OR REACH OUTLET (T/HA)

DEP SEDIMENT DEPOSITION WITHIN A REACH (T/HA)
DEG SEDIMENT DEGRADATION WITHIN A REACH (T/HA)

YMNU MANURE YIELD FROM SUBAREA OR REACH OUTLET (T/HA)

YC CARBON LOSS WITH SEDIMENT (T/HA)

YN SEDIMENT TRANSPORTED N FROM SUBAREA OR REACH (KG/HA)

QN SOLUBLE N FROM SUBAREA OR REACH (KG/HA)

YP SEDIMENT TRANSPORTED P FROM SUBAREA OR REACH (KG/HA)

QP SOLUBLE P FROM SUBAREA OR REACH (KG/HA)
SSFN SOLUBLE N FROM SUBAREA OR REACH (KG/HA)
QRFN SOLUBLE N IN QUICK RETURN FLOW (KG/HA)
QDRN SOLUBLE N FROM A DRAINAGE SYSTEM (KG/HA)

RTFN SOLUBLE N IN RETURN FLOW (KG/HA)

3.6 *.ACN - ANNUAL SOIL ORGANIC CARBON AND NITROGEN FILE

A column for each soil layer (soil profile is divided into 10 layers; however, the layers are identified with the original layer number). This file also includes a total across layers. (units are kg/ha unless otherwise designated)

DEPTH OF SOIL LAYER (M)

BD 33KPA BULK DENSITY AT FIELD CAPACITY (T/M3)

SAND(%) PERCENT SAND IN SOIL SILT(%) PERCENT SILT IN SOIL CLAY(%) PERCENT CLAY IN SOIL

ROCK(%) PERCENT ROCK FRAGMENTS IN SOIL
WLS WEIGHT OF STRUCTURAL LITTER
WLM WEIGHT OF METABOLIC LITTER

WLSL WEIGHT OF LIGNIN CONTENT IN STRUCTURAL LITTER

WLSC WEIGHT OF STRUCTURAL LITTER C POOL WLMC WEIGHT OF METABOLIC LITTER C POOL

WLSLC WEIGHT C CONTENT OF LIGNIN IN STRUCTURAL LITTER

WLSLNC WEIGHT NON-C CONTENT OF LIGNIN IN STRUCTURAL LITTER

WBMC BIOMASS C POOL
WHSC SLOW HUMUS C POOL
WHPC PASSIVE HUMUS C POOL

WOC TOTAL C POOL

WLSN STRUCTURAL LITTER N
WLMN METABOLIC LITTER N
WBMN BIOMASS N POOL
WHSN SLOW HUMUS N POOL
WHPN PASSIVE HUMUS N POOL

WON TOTAL N POOL

3.7 *.SCX – SUMMARY SOIL ORGANIC CARBON AND NITROGEN FILE

A column for each soil layer (soil profile is divided into 10 layers; however, the layers are identified with the original layer number). This file also includes a total across layers.

(C and N units are kg/ha unless otherwise designated)

Z SOIL DEPTH (M)

SWF SOIL WATER FACTOR
TEMP SOIL TEMPERATURE (C)

SWTF COMBINED SOIL WATER AND TEMP FACTOR

TLEF TILLAGE FACTOR SPDM N SUPPLY/DEMAND

RSDC CARBON INPUT IN RESIDUE

RSPC CARBON RESPIRATION FROM RESIDUE

RNMN NET N MINERALIZATION DN03 CHANGE IN MINERAL N

HSCO INITIAL SLOW HUMUS C POOL
HSCF FINAL SLOW HUMUS C POOL
HPCO INITIAL PASSIVE HUMUS C POOL
HPCF FINAL PASSIVE HUMUS C POOL

LSCO INITIAL STRUCTURAL LITTER C POOL LSCF FINAL STRUCTURAL LITTER C POOL LMCO INITIAL METABOLIC LITTER C POOL LMCF FINAL METABOLIC LITTER C POOL

BMCO INITIAL BIOMASS C POOL BMCF FINAL BIOMASS C POOL W0CO INITIAL TOTAL C POOL W0CF FINAL TOTAL C POOL

DW0C CHANGE IN TOTAL C POOL
HSNO INITIAL SLOW HUMUS N POOL
HSNF FINAL SLOW HUMUS N POOL
HPNO INITIAL PASSIVE HUMUS N POOL
HPNF FINAL PASSIVE HUMUS N POOL

LSNO INITIAL STRUCTURAL LITTER N POOL LSNF FINAL STRUCTURAL LITTER N POOL LMNO INITIAL METABOLIC LITTER N POOL LMNF FINAL METABOLIC LITTER N POOL

BMNO INITIAL BIOMASS N POOL
BMNF FINAL BIOMASS N POOL
W0NO INITIAL TOTAL N POOL
W0NF FINAL TOTAL N POOL

DW0N CHANGE IN TOTAL N POOL

C/NO INITIAL C/N RATIO C/NF FINAL C/N RATIO

3.8 *.SUS – SUBAREA SUMMARY FILE

SA# SUBAREA NUMBER ASSIGNED BY COMPUTER

ID# SUBAREA ID NUMBER INPUT BY USER

PRECIPITATION (MM) **PRCP**

P10D DUST EMISSION WITH < 10 MICRON PARTICLE SIZE (KG/HA)

ET **EVAPOTRANSPIRATION (MM)** Q ANNUAL SURFACE RUNOFF (MM) CN SCS RUNOFF CURVE NUMBER

SSF LATERAL SUBSURFACE FLOW (MM)

PRK PERCOLATION BELOW THE ROOT ZONE (MM) FLOW FROM A DRAINAGE SYSTEM (MM) ODR YC CARBON LOSS WITH SEDIMENT (KG/HA)

C CROP COVER FACTOR

MUSS SOIL EROSION-WATER (T/HA) YWND SOIL EROSION-WIND (T/HA)

RSDA CROP RESIDUE ADDED AT HARVEST (T/HA)

IRGA IRRIGATION WATER APPLIED (MM)

MANURE EROSION (KG/HA) **YMNU**

ON SOLUBLE NITROGEN YIELD (KG/HA)

MINERAL NITROGEN LOSS IN LATERAL SUBSURFACE FLOW FROM **SSFN**

SUBAREA OR REACH (KG/HA)

PRKN MINERAL NITROGEN LOSS IN PERCOLATE (KG/HA)

ODRN DRAIN TILE FLOW (MM)

SOLUBLE NITROGEN IN QUICK RETURN FLOW (KG/HA) **QRFN**

OP SOLUBLE PHOSPHORUS YIELD (KG/HA)

DNMO DEPOSITION OF MINERAL NITROGEN AT WATERSHED OUTLET (KG/HA)

3.9 *.SWT – WATERSHED OUTPUT TO SWAT

AREA WATERSHED AREA (HA)

JDA

YEAR YEAR

TOTAL FLOW (m³) TOT FLOW

YSD SEDIMENT YIELD (T/HA)

SEDIMENT TRANSPORTED NITROGEN FROM SUBAREA OR REACH (KG/HA) YN SEDIMENT TRANSORTED PHOSPHORUS FROM SUBAREA OR REACH (KG/HA) YP

TOT NO3 TOTAL NITRATE NITROGEN TRANSPORTED FROM SUBAREA OR REACH

(KG/HA)

QP SOLUBLE PHOSPHORUS YIELD FROM SUBAREA OR REACH (KG/HA)

3.10 *.MSA – MONTHLY SUBAREA FILE

This file contains data by month for numerous variables

SA # SUBAREA NUMBER

ID SUBAREA ID

YR YEAR

YR# YEAR NUMBER(1-NBYR)

TMX MAXIMUM TEMPERATURE (°C)
TMN MINIMUM TEMPERATURE (°C)
SRAD SOLAR RADIATION (MJ/M²)

PRCP PRECIPITATION (MM)
SNOF SNOWFALL (MM)
SNOM SNOWMELT (MM)

PET POTENTIAL EVAPOTRANSPIRATION (MM)

ET EVAPOTRANSPIRATION (MM)

EP TRANSPIRATION (MM)
Q SURFACE RUNOFF (MM)

CN NRCS RUNOFF CURVE NUMBR

SSF LATERAL SUBSURFACE FLOW (MM)

PRK PERCOLATION BELOW THE ROOT ZONE (MM)

IRGA IRRIGATION APPLIED (MM)
EI RAINFALL ENERGY FACTOR
C CROP MANAGEMENT FACTOR

USLE SOIL LOSS FROM WATER EROSION USING USLE (T/HA)
MUSL SOIL LOSS FROM WATER EROSION USING MUSLE (T/HA)

MUSS SOIL EROSION-WATER (T/HA)

MUST SOIL LOSS FROM WATER EROSION USING MODIFIED MUSLE (T/HA)

YN SEDIMENT TRANSPORTED NITROGEN FROM SUBAREA OR REACH (KG/HA)

GMN NITROGEN MINERALIZED (KG/HA)

DN NITROGEN LOSS BY DENITRIFICATION (KG/HA)
NFIX NITROGEN FIXED BY LEGUMINOUS CROPS (KG/HA)

NMN NITROGEN MINERALIZED FROM STABLE ORGANIC MATTER (KG/HA)

NITR NITRIFICATION (KG/HA)

AVOL NITROGEN VOLATILIZATION (KG/HA)

YP PHOSPHORUS LOSS WITH SEDIMENT (KG/HA)

ER ENRICHMENT RATIO

FNO ORGANIC NITROGEN FERTILIZER (ANIMAL WASTE) (KG/HA)

FNMN NITRATE-N FERTILIZER (KG/HA) FNMA AMMONIUM-N FERTILIZER (KG/HA)

FPO ORGANIC PHOSPHORUS (ACTUAL P) IN MANURE (KG/HA)
FPL MINERAL PHOSPHORUS FERTILIZER APPLIED (KG/HA)

TMP TEMPERATURE IN SECOND SOIL LAYER (°C)

SW10 SOIL WATER CONTENT IN TOP 10 MM

DPRK DEEP PERCOLATION (MM)

RSSF RETURN SUBSURFACE FLOW (MM)

RSDC CARBON CONTAINED IN CROP RESIDUE (KG/HA)

RSPC CO² RESPIRATION (KG/HA)

PRKC CARBON LEACHED FROM ROOT ZONE (KG/HA)

QC CARBON IN RUNOFF (KG/HA)

YC CARBON LOSS WITH SEDIMENT (KG/HA) RSDA CROP RESIDUE ADDED AT HARVEST (KG/HA)

QRF QUICK RETURN FLOW (MM)

QRFN SOLUBLE NITROGEN IN QUICK RETURN FLOW (KG/HA)

RFIC RAINFALL INTERCEPTION (MM) YMNU MANURE EROSION (KG/HA)

DEMR DUST EMISSION RATE

P10D DUST EMISSION WITH <10 MICRON PARTICLE SIZE (KG/HA)

FPF FLOODPLAIN INFILTRATION (MM)

FOC ORGANIC CARBON FRACTION IN FERTILIZER
DEPC CARBON DEPOSITED IN ROUTING REACH (KG/HA)

DECR RESIDUE DECAY (T/HA)

PSOQ POINT SOURCE FLOW VOLUME (MM)

PSON POINT SOURCE SOLUBLE NITROGEN LOAD (KG/HA)
PSOP POINT SOURCE SOLUBLE PHOSPHORUS LOAD (KG/HA)
RUSL SOIL EROSION BY WATER ESTIMATED WITH RUSLE (T/HA)

ZNMA MINERAL NITROGEN IN AMMONIUM FORM IN ROOT ZONE (KG/HA)
ZNMN MINERAL NITROGEN IN NITRATE FORM IN ROOT ZONE (KG/HA)
ZPML MINERAL PHOSPHORUS IN LABILE FORM IN ROOT ZONE (KG/HA)

UNM PLANT NITROGEN UPTAKE (KG/HA) UPM PLANT PHOSPHORUS UPTAKE (KG/HA)

RZSW ROOT ZONE SOIL WATER (MM)
WTBL INITIAL WATER TABLE HEIGHT (M)
GWST GROUNDWATER STORAGE (MM)

STDO STANDING DEAD CROP RESIDUE (T/HA)
RSD CROP RESIDUE ON SOIL SURFACE (T/HA)

RSVQ RESERVOIR STORAGE (MM)

RSVY SEDIMENT CONTAINED IN RESERVOIR (T/HA)

RSSA RESERVOIR SURFACE AREA (SQ. HA)

SWLT WATER CONTENT OF SURFACE LITTER (MM)

SNO WATER CONTENT OF SNOW (MM)

RSDM MANURE PRESENT ON SOIL SURFACE (T/HA)

GWSN NITROGEN CONTAINED IN GROUND WATER (KG/HA)

3.11 *.DHY – DAILY SUBAREA HYDROLOGY FILE

SA # SUBAREA NUMBER

ID SUBAREA ID

Y YEAR M MONTH D DAY CN NRCS RUNOFF CURVE NUMBER

RAIN PRECIPITATION (MM)
Q SURFACE RUNOFF (MM)

SSF LATERAL SUBSURFACE FLOW (MM)

QRF QUICK RETURN FLOW (MM)

RSSF RETURN SUBSURFACE FLOW (MM)

QTOT WATER YIELD (MM)

QRB PEAK FLOW RATE (MM/HR)

TC WATERSHED TIME OF CONCENTRATION (HR)

DUR RAINFALL ENERGY FACTOR

ALTC ALPHA

AL5 SOLUBLE PHOSPHORUS CONCENTRATION IN PLOW DEPTH (G/T)

REP PEAK RAINFALL INTENSITY (MM/HR)

RZSW ROOT ZONE SOIL WATER (MM)
GWST GROUNDWATER STORAGE (MM)

3.12 *.SAD – DAILY SUBAREA FILE

SA# SUBAREA NUMBER

ID SUBAREA ID

Y YEAR M MONTH D DAY

TMX MAXIMUM TEMPERATURE (°C)
TMN MINIMUM TEMPERATURE (°C)

PRCP PRECIPITATION (MM)

PET POTENTIAL EVAPOTRANSPIRATION (MM)

ET EVAPOTRANSPIRATION (MM)

Q SURFACE RUNOFF (MM)

MUST SOIL LOSS FROM WATER EROSION USING MODIFIED MUSLE (T/HA)

GMN NITROGEN MINERALIZED (KG/HA)

NMN NITROGEN MINERALIZED FROM STABLE ORGANIC MATTER (KG/HA)

NITR NITRIFICATION (KG/HA)

AVOL NITROGEN VOLATILIZATION (KG/HA)

TMP TEMPERATURE IN SECOND SOIL LAYER (°C)
RSDC CARBON CONTAINED IN CROP RESIDUE (KG/HA)

RSPC CO² RESPIRATION (KG/HA)

YC CARBON LOSS WITH SEDIMENT (KG/HA)

ZNMA MINERAL NITROGEN IN AMMONIUM FORM IN ROOT ZONE (KG/HA)
ZNMN MINERAL NITROGEN IN NITRATE FORM IN ROOT ZONE (KG/HA)
ZPML MINERAL PHOSPHORUS IN LABILE FORM IN ROOT ZONE (KG/HA)

UNM PLANT NITROGEN UPTAKE (KG/HA)
UPM PLANT PHOSPHORUS UPTAKE (KG/HA)

RZSW ROOT ZONE SOIL WATER (MM)
WTBL INITIAL WATER TABLE HEIGHT (M)

GWST GROUNDWATER STORAGE (MM)

STDO STANDING DEAD CROP RESIDUE (T/HA)
RSD CROP RESIDUE ON SOIL SURFACE (T/HA)

RSVQ RESERVOIR STORAGE (MM)

RSVY SEDIMENT CONTAINED IN RESERVOIR (T/HA)

RSSA RESERVOIR SURFACE AREA (SQ. HA)

SWLT WATER CONTENT OF SURFACE LITTER (MM)

SNO WATER CONTENT OF SNOW (MM)

RSDM MANURE PRESENT ON SOIL SURFACE (T/HA)

GWSN NITROGEN CONTAINED IN GROUND WATER (KG/HA)

3.13 *.DRS – DAILY RESERVOIR FILE

SA# SUBAREA NUMBER

ID SUBAREA ID

Y YEAR M MONTH D DAY

PRCP PRECIPITATION (MM)

QI INFLOW HYDROGRAPH RATE (M³)

EV EVAPORATION (M³)

SP SEEPAGE (M^3)

Q0 OUTFLOW HYDROGRAPH RATE (M³)
RSV INITIAL RESERVOIR VOLUME (M³)

RSVP VOLUME AT PRINCIPAL SPILLWAY ELEVATION (M³)
RSVE VOLUME AT EMERGENCY SPILLWAY ELEVATION (M³)

YI SEDIMENT INFLOW (T/HA) YO SEDIMENT OUTFLOW (T/HA)

YRP (T/HA)

DEP SEDIMENT DEPOSITION WITHIN A REACH (T/HA)

RSYS INITIAL SEDIMENT CONCENTRATION IN RESERVOIR (T/HA)

RSSA RESERVOIR SURFACE AREA (HA)

3.14 *.MWS – MONTHLY WATERSHED FILE

This file contains data by month and year for numerous variables

QSW WATERSHED OUTFLOW-SURFACE RUNOFF COMPONENT (MM)

QTW WATERSHED OUTFLOW (MM)

YW SOIL LOSS FROM WIND EROSION (T/HA)

YNW WATERSHED YIELD OF SEDIMENT TRANSPORTED NITROGEN (KG/HA)
YPW WATERSHED YIELD OF SEDIMENT TRANSPORTED PHOSPHORUS (KG/HA)

QNW WATERSHED SOLUBLE NITROGEN YIELD (KG/HA)
QPW WATERSHED SOLUBLE PHOSPHORUS YIELD (KG/HA)

YMUW MANURE YIELD FROM SUBAREA OR REACH OUTLET (T/HA)

QPUW SOLUBLE PHOSPHORUS YIELD IN MANURE FROM WATERSHED (KG/HA)

YCW CARBON TRANSPORTED BY SEDIMENT (FROM WATERSHED OUTLET) (KG/HA)

3.15 *.DWS – DAILY WATERSHED OUTLET FILE

Y YEAR M MONTH D DAY

RFV PRECIPITATION (MM)

TMX MAXIMUM TEMPERATURE (°C)
TMN MINIMUM TEMPERATURE (°C)

PRCP PRECIPITATION (MM)

PET POTENTIAL EVAPOTRANSPIRATION (MM)

ET EVAPOTRANSPIRATION (MM)

Q SURFACE RUNOFF (MM)

MUST SOIL LOSS FROM WATER EROSION USING MODIFIED MUSLE (T/HA)

GMN NITROGEN MINERALIZED (KG/HA)

NMN NITROGEN MINERALIZED FROM STABLE ORGANIC MATTER (KG/HA)

NITR NITRIFICATION (KG/HA)

AVOL NITROGEN VOLATILIZATION (KG/HA)

TMP TEMPERATURE IN SECOND SOIL LAYER (°C)
RSDC CARBON CONTAINED IN CROP RESIDUE (KG/HA)

RSPC CO² RESPIRATION (KG/HA)

YC CARBON LOSS WITH SEDIMENT (KG/HA)

3.16 *.DGZ – DAILY GRAZING FILE

SA# SUBAREA NUMBER

ID SUBAREA ID Y YEAR DATE M MONTH DATE

D DAY DATE

Y# RUN YEAR NUMBER
ON# OWNER NUMBER
HD# HERD NUMBER
OPER OPERATION

CROP CROPPING SYSTEM NAME

YLD CROP YIELD (T/HA)

YSD SEDIMENT YIELD (T/HA)

AGPM ABOVE GROUND PLANT MATERIAL (T/HA)
STL STANDING LIVE PLANT BIOMASS (T/HA)
STD STANDING DEAD CROP RESIDUE (T/HA)

RSD CROP RESIDUE ON THE SOIL SURFACE (T/HA)

3.17 *.DUX – DAILY MANURE APPLICATION FILE

SA# SUBAREA NUMBER

ID SUBAREA ID
Y YEAR DATE
M MONTH DATE
D DAY DATE

Y# RUN YEAR NUMBER
ON# OWNER NUMBER
HD# HERD NUMBER
FERT FERTILIZER TYPE

AP RATE FERTILIZER APPLICATION RATE (KG/HA)
MN MINERAL NITROGEN APPLIED (KG/HA)
NH3 AMMONIA NITROGEN APPLIED (KG/HA)
ON ORGANIC NITROGEN APPLIED (KG/HA)
MP MINERAL PHOSPHORUS APPLIED (KG/HA)
OP ORGANIC PHOSPHORUS APPLIED (KG/HA)

3.18 *.DDD – DAILY DUST DISTRIBUTION

ORDER # ORDER OF SUBAREA FROM GREATEST TO LEAST DUST

DISTRIBUTION

SA# SUBAREA NUMBER

ID SUBAREA ID

DP10 DUST DEPOSITION WITH <10 MICRON PARTICLE SIZE (KG/HA) FRACT FRACTION OF DUST EMISSION WHICH IS DEPOSITED IN THE

SUBAREA

ACCUM SUM OF THE FRACTION OF DUST EMISSION. THIS SHOULD BE

NEAR 1

3.19 *.DCN – DAILY SOIL ORGANIC CARBON AND NITROGEN FILE

A column for each soil layer (soil profile is divided into 10 layers; however, the layers are identified with the original layer number). This file also includes a total across layers.

(C and N units are kg/ha unless otherwise designated)

SA# SUBAREA NUMBER

ID SUBAREA ID DEPTH SOIL DEPTH (M)

SW SOIL WATER CONTENT (M/M)
TEMP SOIL TEMPERATURE (°C)

RSD CROP RESIDUE ON SOIL SURFACE (T/HA)

CO2 LOSS CO2 LOST TO THE ATMOSPHERE FROM RESPIRATION (KG/HA) NET MN NET NITROGEN MINERALIZATION FROM LITTER, HUMUS, AND

BIOMASS (KG/HA)

FOP FRESH ORGANIC PHOSPHORUS (KG/HA)

3.20 *.ACY – ANNUAL SUBAREA CROP YIELD FILE

SA# SUBAREA NUMBER ASSIGNED BY COMPUTER

ID# SUBAREA ID NUMBER INPUT BY USER

YR YEAR

YR# RUN YEAR NUMBER

CPNM CROP NAME

YLDG GRAIN, FIBER, ETC CROP YIELD (T/HA)

YLDF FORAGE CROP YIELD (T/HA)

BIOM CROP BIOMASS (T/HA)
WS DROUGHT STRESS (DAYS)
NS NITROGEN STRESS (DAYS)
PS PHOSPHORUS STRESS (DAYS)
TS TEMPERATURE STRESS (DAYS)
AS EXCESS WATER STRESS (DAYS)

ZNMN MINERAL NITROGEN IN NITRATE FORM IN THE ROOT ZONE (KG/HA)

ZQP SOLUBLE PHOSPHORUS IN THE ROOT ZONE (KG/HA)

AP15 PLOW DEPTH SOLUBLE PHOSPHORUS CONCENTRATION (G/T)

ZOC ORGANIC CARBON IN THE ROOT ZONE (T/HA)
OCPD ORGANIC CARBON IN PLOW DEPTH (KG/HA)

RSDP CROP RESIDUE PRESENT (T/HA) ARSD ADDED CROP RESIDUE (T/HA)

FNMN NITRATE NITROGEN FERTILIZER APPLIED (KG/HA) FNMA AMMONIUM NITROGEN FERTILIZER APPLIED (KG/HA)

FNO ORGANIC NITROGEN FERTILIZER (ANIMAL WASTE) APPLIED (KG/HA)

FPL MINERAL PHOSPHORUS FERTILIZER APPLIED (KG/HA)

3.21 *.EFR – RUNOFF EVENT FLOOD ROUTING FILE

SA SUBAREA NUMBER

ID SUBAREA ID CMD COMMAND IDO OUTFLOW ID

Y YEAR M MONTH D DAY

QP PEAK FLOW RATE (M³/S)
TP TIME TO PEAK (HR)
Q RUNOFF VOLUME (MM)

SMQ SUM OF RAINFALL EXCESS (MM)

SMH SUM OF RUNOFF VOLUME IN HYDROGRAPH (MM)

3.22 *.EHY – RUNOFF EVENT HYDROGRAPHS FILE

SA SUBAREA NUMBER

ID SUBAREA ID CMD COMMAND IDO OUTFLOW ID

Y YEAR M MONTH D DAY

T TIME (HR)

WSAH WATERSHED AREA (HA)

SCN CN RETENTION PARMETER (MM)

QVOL RUNOFF VOLUME (MM)

HYD HYDROGRAPH STORAGE (MM) TC TIME OF CONCENTRATION (HR)

XKDT RECESSION CONSTANT/TIME TO PEAK (HR)

RF RAINFALL (MM)
QV RUNOFF (MM)

DQ CHANGE IN RUNOFF (M³/S)

ST STORAGE (M^3/S)

OHYH OUTFLOW RATE (M^3/S)

HYDVOL TOTAL RUNOFF VOLUME (MM)

HYDST TOTAL STORAGE (MM) PEAKRATE TOTAL PEAK RATE (M^3/S) TP TOTAL TIME OF CONCENTRATION (HR)

WSAS WATERSHED AREA (HA)

HYDV RUNOFF (MM)

YI INFLOW SEDIMENT (T/HA)
STY STORAGE SEDIMENT (T/HA)
QHYS OUTFLOW RATE (M³/S)

CY SEDIMENT CONCENTRATION (PPM)
YHY OUTFLOW SEDIMENT RATE (T/S)
YITOTAL TOTAL INFLOW SEDIMENT (T/HA)

YIS SEDIMENT INFLOW STORED FROM PREVIOUS DAY (T/HA)

YO SEDIMENT OUTFLOW (T/HA)

YOS SEDIMENT OUTFLOW STORED AT THE END OF THE DAY (T/HA)

IDN1 ROUTE INFLOW ID

WSAA WATERSHED AREA (HA)
WSA (IDN1) ROUTE INFLOW AREA (HA)

HYDVOLR ROUTE INFLOW RUNOFF VOLUME (MM)
HYDSTRR ROUTE INFLOW TOTAL STORAGE (MM)
QCAP ROUTE CHANNEL FLOW CAPACITY (M³/S)

IT ROUTE NUMBER OF ITERATIONS TO CONVERGING SOLUTION

RFR ROUTE RAINFALL (MM)

QI ROUTE REACH INFLOW HYDROGRAPH RATE (M³/S)

V ROUTE FLOW VELOCITY (M/S) TT ROUTE TRAVEL TIME (HR)

C ROUTE VARIABLE STORAGE COEFFICIENT

QIST ROUTE QI PLUS STR STR ROUTE STORAGE (M^3/S)

QOR ROUTE OUTFLOW HYDROGRAPH REATE QI1 + QI2 (M³/S)

HYDVOLTOTR ROUTE OUTFLOW RUNOFF VOLUME (MM)
HYDSTTOTR ROUTE OUTFLOW TOTAL STORAGE (MM)

PEAKRATERT ROUTE TOTAL PEAK RATE (M³/S)

TPR ROUTE TOTAL TIME OF CONCENTRATION (HR)

AVE IT ROUTE AVERAGE NUMBER OF ITERATIONS REQUIRED FOR

COMPLETE SOLUTION OF ROUTING EQUATIONS

IDN1A ADD HYD INFLOW ID

IDN2 ADD HYD ROUTE REACH ID

QI1 ADD HYD INFLOW RATE FOR SA1 (M³/S) QI2 ADD HYD INFLOW RATE FOR SA2 (M³/S)

QO ADD HYD OUTFLOW HYDROGRAPH RATE QI1 +QI2 (M³/S)

WSA (IDN1)A ADD HYD INFLOW REACH AREA (HA)

WSA (IDN2)
WSA (IDO)
ADD HYD REACH AREA (HA)
ADD HYD OUTFLOW AREA (HA)
ADD HYD RUNOFF VOLUME (MM)
PEAK RATE A
ADD HYD TOTAL PEAK RATE (M³/S)

TPRA ADD HYD TOTAL TIME OF CONCENTRATION (HR)

3.23 *.APS – ANNUAL PESTICIDE FILE

This file may include data for up to 10 pesticides

SA# SUBAREA NUMBER

ID SUBAREA ID

YR YEAR

YR# RUN YEAR NUMBER

Q ANNUAL SURFACE RUNOFF (MM) SSF LATERAL SUBSURFACE FLOW (MM)

PRK PERCOLATION BELOW THE ROOT ZONE (MM)

ODRN DRAIN TILE FLOW (MM)

Y SEDIMENT YIELD FROM SUBAREA OR REACH OUTLET (T/HA)

YOC ORGANIC CARBON LOST WITH SEDIMENT (T/HA)

PSTN PESTICIDE NAME

PAPL PESTICIDE APPLIED (G/HA)
PSRO PESTICIDE IN RUNOFF (G/HA)
PLCH PESTICIDE LEACHED (G/HA)

PSSF PESTICIDE IN SUBSURFACE FLOW (G/HA)

PSED PESTICIDE IN SEDIMENT (G/HA)

PDGF PESTICIDE BIODEGRADED ON FOLIAGE (G/HA)
PDGS PESTICIDE BIODEGRADED IN THE SOIL (G/HA)
PDRN PESTICIDE IN DRAINAGE SYSTEM (G/HA)

CMX4D 4-DAY PESTICIDE CONCENTRATION IN RUNOFF (PPB)

3.24 *.MSW – MONTHLY OUTPUT TO SWAT

AREA WATERSHED AREA (HA)

YEAR YEAR MONTH MONTH

Q ANNUAL SURFACE RUNOFF (MM)

Y SEDIMENT YIELD FROM SUBAREA OR REACH OUTLET (T/HA) YN SEDIMENT TRANSPORTED NITROGEN FROM SUBAREA OR REACH

(T/HA)

YP SEDIMENT TRANSPORTED PHOSPHORUS FROM SUBAREA OR REACH

(T/HA)

QN SOLUBLE NITROGEN YIELD CONTAINED IN SURFACE RUNOFF FROM

SUBAREA OR REACH (KG/HA)

QP SOLUBLE PHOSPHORUS YIELD CONTAINED IN SURFACE RUNOFF

FROM SUBAREA OR REACH (KG/HA)

3.25 *.DPW – DAILY WATERSHED PESTICIDE FILE

This file may include data for up to 10 pesticides

SA# SUBAREA NUMBER

ID SUBAREA ID

Y YEAR M MONTH D DAY

RFV PRECIPITATION (MM)

Q ANNUAL SURFACE RUNOFF (MM) SSF LATERAL SUBSURFACE FLOW (MM)

YSD SEDIMENT YIELD (T/HA)

PSTN PESTICIDE NAME

PSRO PESTICIDE IN RUNOFF (G/HA)

PSSF PESTICIDE IN SUBSURFACE FLOW (G/HA)

PSED PESTICIDE IN SEDIMENT (G/HA)

3.26 *.SPS – PESTICIDE SUBAREA SUMMARY FILE

This file may include data for up to 10 pesticides

SA# SUBAREA NUMBER

ID SUBAREA ID PSTN PESTICIDE NAME

PAPL PESTICIDE APPLIED (G/HA)

PSRO PESTICIDE IN RUNOFF (G/HA)
PLCH PESTICIDE LEACHED (G/HA)

PSSF PESTICIDE IN SUBSURFACE FLOW (G/HA)

PSED PESTICIDE IN SEDIMENT (G/HA)

PDGF PESTICIDE BIODEGRADED ON FOLIAGE (G/HA) PDGS PESTICIDE BIODEGRADED IN THE SOIL (G/HA)

PDRN PESTICIDE IN DRAINAGE SYSTEM (G/HA)

3.27 *.ACO – ANNUAL COST FILE

SA# SUBAREA NUMBER

ID SUBAREA ID

Y YEAR M MONTH D DAY

OP OPERATION NAME OR DESCRIPTION CROP CROP NUMBER (REFER TO CROP.DAT)

MT# NUMBER OF MATERIAL FROM FERT OR PEST FILES

HC IHC CODE (REFER TO TILL.DAT)

EQ OPERATION OR EQUIPMENT CODE (REFER TO TILL.DAT)

TR TRACTOR (REFER TO TILL.DAT)

COTL TOTAL COST (\$/HA)
COOP OPERATION COST (\$/HA)
MTCO MATERIAL COST (\$/HA)
MASS AMOUNT APPLIED (KG/HA)

FUEL USAGE (L/HA)

3.28 *.SWN – SPECIAL WATERSHED SUMMARY FOR NRCS FARM PLANNING FILE

SA ID SUBAREA ID

QS SURFACE RUNOFF (MM)

EROS SOIL LOSS BY WATER EROSION (T/HA)

Y SEDIMENT YIELD (T/HA)

YN AVERAGE ANNUAL SEDIMENT TRANSPORTED NITROGEN FROM

SUBAREA OR REACH (KG/HA)

TN TOTAL NITROGEN TRANSPORTED IN SEDIMENT (INORGANIC +

ORGANIC) (KG/HA)

DWOC CHANGE IN ORGANIC CARBON DURING SIMULATION (KG/HA)

3.29 *.FSA – SPECIAL FSA ANNUAL SUBAREA FILE

RUN NAME NAME OF RUN
SITE FILE SITE FILE USED
SOIL FILE SOIL FILE USED

MANAGEMENT USED

RUN# RUN NUMBER

IRO#

WS# WATERSHED NUMBER

YR YEAR

RT# REAL TIME NUMBER PRCP PRECIPITATION (MM)

PET POTENTIAL EVAPOTRANSPIRATION (MM)

ET EVAPOTRANSPIRATION (MM)

Q SURFACE RUNOFF (MM)

SSF LATERAL SUBSURFACE FLOW (MM)

PRK PERCOLATION BELOW THE ROOT ZONE (MM)

ODR FLOW FROM DRAINAGE SYSTEM (MM)

IRGA IRRIGATION APPLIED (MM)

QIN INFLOW TO THE ROOT ZONE FROM THE WATER TABLE (MM)

C CROP MANAGEMENT FACTOR

USLE SOIL LOSS FROM WATER EROSION USING USLE (T/HA)
MUSL SOIL LOSS FROM WATER EROSION USING MUSLE (T/HA)

AOF SOIL LOSS FROM WATER EROSION USED ONSTAD-FOSTER (T/HA)

MUSS SOIL EROSION-WATER (T/HA)

MUST SOIL LOSS FROM WATER EROSION USING MODIFIED MUSLE (T/HA)
MUSI SOIL LOSS FROM WATER EROSION USING MODIFIED MUSLE (T/HA)

YWND SOIL EROSION-WIND (T/HA)

IRGA IRRIGATION WATER APPLIED (MM)

YMNU MANURE EROSION (KG/HA)

YN SEDIMENT TRANSPORTED NITROGEN FROM SUBAREA OR REACH

(KG/HA)

QN SOLUBLE NITROGEN YIELD (KG/HA)

SSFN MINERAL NITROGEN LOSS IN LATERAL SUBSURFACE FLOW FROM

SUBAREA OR REACH (KG/HA)

PRKN MINERAL NITROGEN LOSS IN PERCOLATE (KG/HA)

QP SOLUBLE PHOSPHORUS YIELD (KG/HA)

DN NITROGEN LOSS BY DENITRIFICATION (KG/HA)
NFIX NITROGEN FIXED BY LEGUMINOUS CROPS (KG/HA)

NMN NITROGEN MINERALIZED FROM STABLE ORGANIC MATTER (KG/HA)

NITR NITRIFICATION (KG/HA)

AVOL NITROGEN VOLATILIZATION (KG/HA)

QDRN DRAIN TILE FLOW (MM)

YP SEDIMENT TRANSPORTED PHOSPHORUS FROM SUBAREA OR REACH

(T/HA)

PRKP PHOSPHORUS LOSS IN PERCOLATE (KG/HA)

FNO ORGANIC NITROGEN FERTILIZER (ANIMAL WASTE) (KG/HA)

FNMN NITRATE-N FERTILIZER (KG/HA) FNMA AMMONIUM-N FERTILIZER (KG/HA)

FPO ORGANIC PHOSPHORUS (ACTUAL P) IN MANURE (KG/HA)
FPL MINERAL PHOSPHORUS FERTILIZER APPLIED (KG/HA)

LIME LIME APPLIED (T/HA)

RSDA CROP RESIDUE ADDED AT HARVEST (T/HA)

RSEV

OCPD ORGANIC CARBON IN PLOW LAYER (KG/HA)

TOC SOIL ORGANIC CARBON (KG/HA)

ITOC

APBC SOLUBLE PHOSPHORUS IN TOP 6 INCHES (PPM)
TAP TOTAL PHOSPHORUS IN SOIL PROFILE (KG/HA)

TNO3 TOTAL SOLUBLE NITROGEN PRESENT IN THE SOIL PROFILE (KG/HA)

CROP CROP NAME

STD STANDING DEAD CROP RESIDUE (T/HA)
STL STANDING LIVE PLANT BIOMASS (T/HA)

LAI LEAF AREA INDEX (M^2/M^2)

YLDG GRAIN YIELD (T/HA) YLDF FORAGE YIELD (T/HA) BIOM CROP BIOMASS (T/HA) YLDN NITROGEN IN CROP YIELD (KG/HA) YLDP PHOSPHORUS IN CROP YIELD (KG/HA)

3.30 *.SUB – SPECIAL SUBAREA FILE FOR GIS

SAID SUBAREA ID GIS GIS CODE

TIME • DAILY TIME STEP: THE JULIAN DATE

• MONTHLY TIME STEP: THE MONTH (1-12)

• ANNUAL TIME STEP: 4-DIGIT YEAR

• AVERAGE ANNUAL SUMMARY LINES: NUMBER OF YEARS

AVERAGED TOGETHER

NOTE: The time step is determined from IPD in the Control Table.

If IPD = 0 - 2, then time step is annual If IPD = 3 - 5, then time step is monthly If IPD = 6 - 9, then time step is daily

WSA AREA OF SUBAREA OR SUBBASIN (HA)

PRCP PRECIPITATION (MM)
SNOF SNOWFALL (MM)
SNOM SNOWMELT (MM)

IRGA IRRIGATION APPLIED (MM)

PET POTENTIAL EVAPOTRANSPIRATION FROM SUBAREA OR SUBBASIN

(MM)

ET ACTUAL EVAPOTRANSPIRATION FROM SUBAREA OR SUBBASIN

(MM)

SW SOIL WATER CONTENT (MM). AMOUNT OF WATER IN THE SOIL

PROFILE AT THE END OF THE SIMULATION PERIOD.

PRK WATER THAT PERCOLATES THROUGH THE ROOT ZONE DURING THE

SIMULATION PERIOD (MM). THERE IS POTENTIALLY A LAG BETWEEN THE TIME THE WATER LEAVES THE BOTTOM OF THE ROOT ZONE AND REACHES THE SHALLOW AQUIFER. OVER A LONG PERIOD OF TIME, THIS VARIABLE SHOULD EQUAL GROUNDWATER

PERCOLATION.

DPRK DEEP PERCOLATION (MM)

QSUR SURFACE RUNOFF CONTRIBUTION TO STREAMFLOW DURING

SIMULATION PERIOD (MM)

SSF LATERAL SUBSURFACE FLOW (MM)
RSSF RETURN SUBSURFACE FLOW (MM)

WYLD WATER YIELD (MM). THE NET AMOUNT OF WATER THAT LEAVES

THE SUBAREA AND CONTRIBUTES TO STREAMFLOW.

CN SCS RUNOFF CURVE NUMBER
TMX MAXIMUM TEMPERATURE (°C)
TMN MINIMUM TEMPERATURE (°C)

TMP TEMPERATURE IN SECOND SOIL LAYER (°C)

SRAD SOLAR RADIATION (MJ/M²)

MUSL SOIL LOSS FROM WATER EROSION USING MUSLE (T/HA) RUS2 SOIL EROSION BY WATER ESTIMATED WITH RUSLE2 (T/HA)

FNO ORGANIC NITROGEN FERTILIZER (ANIMAL WASTE) APPLIED (KG/HA)

FNMN NITRATE NITROGEN FERTILIZER APPLIED (KG/HA)
FNMA AMMONIUM NITROGEN FERTILIZER APPLIED (KG/HA)
FPO ORGANIC PHOSPHORUS FERTILIZER APPLIED (KG/HA)
FPL MINERAL PHOSPHORUS FERTILIZER APPLIED (KG/HA)
NFIX NITROGEN FIXED BY LEGUMINOUS CROPS (KG/HA)

DN NITROGEN LOSS BY DENITRIFICATION (KG/HA)

YN SEDIMENT TRANSPORTED NITROGEN FROM SUBAREA OR REACH

(KG/HA)

YPO SEDIMENT TRANSPORTED ORGANIC PHOSPHORUS FROM SUBAREA

(KG/HA)

QN SUBAREA SOLUBLE N YIELD CONTAINED IN SURFACE RUNOFF

(KG/HA)

QP SOLUBLE PHOSPHORUS YIELD (KG/HA)

YPM TOTAL MINERAL PHOSPHORUS LOSS (KG/HA)

SSFN MINERAL NITROGEN LOSS IN LATERAL SUBSURFACE FLOW FROM

SUBAREA OR REACH (KG/HA)

RSFN SUBAREA SOLUBLE N YIELD IN RETURN FLOW (KG/HA)

PCTI200UM PARTICLES (<200 MICRONS) TRANSPORTED WITH WATER INTO

SUBAREA (KG/HA)

PCTI10UM PARTICLES (<200 MICRONS) TRANSPORTED WITH WATER OUT OF

SUBAREA (KG/HA)

PCTI2UM PARTICLES (<10 MICRONS) TRANSPORTED WITH WATER INTO

SUBAREA (KG/HA)

PCTO200UM PARTICLES (<10 MICRONS) TRANSPORTED WITH WATER OUT OF

SUBAREA (KG/HA)

PCTO10UM PARTICLES (<2 MICRONS) TRANSPORTED WITH WATER INTO

SUBAREA (KG/HA)

PCTO2UM PARTICLES (<2 MICRONS) TRANSPORTED WITH WATER OUT OF

SUBAREA (KG/HA)

THE FOLLOWING VARIABLES ARE DISPLAYED FOR UP TO 5 CROPS

YLDG GRAIN YIELD (T/HA) YLDF FORAGE YIELD (T/HA) HUI HEAT UNIT INDEX

LAI LEAF AREA INDEX (M^2/M^2)

RD ROOTING DEPTH (M)
RW ROOT WEIGHT (T/HA)
BIOM CROP BIOMASS (T/HA)

STL STANDING LIVE PLANT BIOMASS (T/HA)

CPHT CROP HEIGHT (M)

STD STANDING DEAD CROP RESIDUE (T/HA)

STDL STANDING DEAD LIGNIN (T/HA)

WS DROUGHT STRESS (DAYS) SN NITROGEN STRESS (DAYS) SP PHOSPHORUS STRESS (DAYS) TS TEMPERATURE STRESS (DAYS) SAT AERATION STRESS (DAYS)

STRESS REGULATOR. THIS IS THE MINIMUM CONSTRAINT ACROSS **REG**

ALL STRESS TYPES. (DAYS)

CPNM CROP NAME

3.31 *.RCH – SPECIAL REACH FILE FOR GIS

RCID REACH ID GIS GIS CODE

TIME DAILY TIME STEP: THE JULIAN DATE

MONTHLY TIME STEP: THE MONTH (1-12)

ANNUAL TIME STEP: 4-DIGIT YEAR

AVERAGE ANNUAL SUMMARY LINES: NUMBER OF YEARS AVERAGED TOGETHER

NOTE: The time step is determined from IPD in the Control Table.

If IPD = 0 - 2, then time step is annual If IPD = 3 - 5, then time step is monthly If IPD = 6 - 9, then time step is daily

AREA OF SUBAREA OR REACH OUTLET (HA) WSA

AVERAGE STREAMFLOW (SURFACE RUNOFF) INTO REACH (M³/S) QI AVERAGE STREAMFLOW (SURFACE RUNOFF) OUT OF REACH (M³/S) OO

ET EVAPOTRANSPIRATION (M³/S)

WATER LOSS FROM REACH THROUGH INFILTRATION INTO **FPF**

STREAMBED OR FLOODPLAIN. (M³/S)

ΥI SEDIMENT TRANSPORTED WITH WATER INTO REACH (TOTAL TONS) SEDIMENT TRANSPORTED WITH WATER OUT OF REACH (TOTAL YO

TONS)

CYSEDIMENT CONCENTRATION IN REACH (PPM)

ORGANIC NITROGEN TRANSPORTED WITH WATER INTO REACH YONI

(TOTAL KG)

ORGANIC NITROGEN TRANSPORTED WITH WATER OUT OF REACH YONO

(TOTAL KG)

YOPI ORGANIC PHOSPHORUS TRANSPORTED WITH WATER INTO REACH

(TOTAL KG)

ORGANIC PHOSPHORUS TRANSPORTED WITH WATER OUT OF YOPO

REACH (TOTAL KG)

NITRATE TRANSPORTED WITH WATER INTO REACH (TOTAL KG) NO3I NITRATE TRANSPORTED WITH WATER OUT OF REACH (TOTAL KG) NO₃O

NH4I AMMONIUM TRANSPORTED WITH WATER INTO REACH (TOTAL KG)
NH4O AMMONIUM TRANSPORTED WITH WATER OUT OF REACH (TOTAL

KG)

NO2I NITRITE TRANSPORTED WITH WATER INTO REACH (TOTAL KG)
NO2O NITRITE TRANSPORTED WITH WATER OUT OF REACH (TOTAL KG)
QPI MINERAL PHOSPHORUS TRANSPORTED WITH WATER INTO REACH

(TOTAL KG)

QPO MINERAL PHOSPHORUS TRANSPORTED WITH WATER OUT OF

REACH (TOTAL KG)

ALGI ALGAL BIOMASS TRANSPORTED WITH WATER INTO REACH (TOTAL

KG)

ALGO ALGAL BIOMASS TRANSPORTED WITH WATER OUT OF REACH

(TOTAL KG)

BODI CARBONACEOUS BIOCHEMICAL OXYGEN DEMAND OF MATERIAL

TRANSPORTED INTO REACH (TOTAL KG)

BODO CARBONACEOUS BIOCHEMICAL OXYGEN DEMAND OF MATERIAL

TRANSPORTED OUT OF REACH (TOTAL KG)

DO2I AMOUNT OF DISSOLVED OXYGEN TRANSPORTED INTO REACH

(TOTAL KG)

DO2O AMOUNT OF DISSOLVED OXYGEN TRANSPORTED OUT OF REACH

(TOTAL KG)

QPSI SOLUBLE PESTICIDE TRANSPORTED WITH WATER INTO REACH

(TOTAL G)

QPSO SOLUBLE PESTICIDE TRANSPORTED WITH WATER OUT OF REACH

(TOTAL G)

YPSI PESTICIDE SORBED TO SEDIMENT TRANSPORTED WITH WATER INTO

REACH (TOTAL G)

YPSO PESTICIDE SORBED TO SEDIMENT TRANSPORTED WITH WATER OUT

OF REACH (TOTAL G)

RPST LOSS OF PESTICIDE FROM WATER BY REACTION (TOTAL G)

VPST LOSS OF PESTICIDE FROM WATER BY VOLATILIZATION (TOTAL G)
DPST TRANSFER OF PESTICIDE FROM WATER TO STREAM OR FLOODPLAIN

SEDI MENT BY SETTLING (TOTAL G)

WYLI WATER YIELD INFLOW (M³/S) WYLO WATER YIELD OUTFLOW (M³/S)

PCTI200UM PARTICLES (<200 MICRONS) TRANSPORTED WITH WATER INTO

REACH (TOTAL KG)

PCTI10UM PARTICLES (<200 MICRONS) TRANSPORTED WITH WATER OUT OF

REACH (TOTAL KG)

PCTI2UM PARTICLES (<10 MICRONS) TRANSPORTED WITH WATER INTO

REACH (TOTAL KG)

PCTO200UM PARTICLES (<10 MICRONS) TRANSPORTED WITH WATER OUT OF

REACH (TOTAL KG)

PCTO10UM PARTICLES (<2 MICRONS) TRANSPORTED WITH WATER INTO REACH

(TOTAL KG)

PCTO2UM PARTICLES (<2 MICRONS) TRANSPORTED WITH WATER OUT OF

REACH (TOTAL KG)

CHAPTER 4

APEX OUTPUT ANALYZER

4.1 FAILED RUNS

1. Soil data (*.SOL):

Missing essential data.

Layer depths out of order.

Curve number input instead of hydrologic soil group number (line 2).

2. **Operation schedule (*.OPS):**

Land use number not input (line 2).

Format problems--data in wrong columns.

Dates not in sequence.

3. Improperly constructed subarea file (*.SUB):

Incorrect routing instructions.

4. When daily weather is input:

Incorrect format.

4.2 PROBLEMS THAT MAY OR MAY NOT CAUSE FAILED RUN

1. Soil data:

Inconsistent data.
Bulk density/texture.
Texture/plant available water.
Organic C/N/P.

2. **Operation Schedule:**

No kill after harvest of annual crop.

4.3 PROBLEMS THAT CAUSE NEAR 0 CROP YIELD

- 1. CO2 = 0.
- 2. When daily weather is input:

Monthly and daily solar radiation units don't match

3. Plant population = 0. (was not input at planting in *.OPS)

4.4 GENERAL PROBLEMS

- Working files don't match those contained in APEXFILE.DAT
 For example you are working with CROP0604.DAT and APEXFILE.DAT contains
 USERCROP.DAT.
- 2. When daily weather is input:

The date must be input on the first line (year, month, day)--format is (2X, 3I4). The beginning simulation date in APEXCONT.DAT must be equal or greater than the one appearing on line one of the weather file (*.WTH).

4.5 COMPLETED RUNS--EXAMINE *.OUT FILES

Select monthly output in APEXCONT.DAT (IPD = 3).

PRELIMINARY INVESTIGATION

1. Check nutrient and water balances for each subarea (look for BALANCE). They should be near 0.

- 2. Check water balance for the entire watershed (TOTAL WATER BALANCE).
- 3. Check total watershed area--if it is not correct there is an error in the routing instructions (last line of last table --AVERAGE ANNUAL DATA).
- 4. Check average annual surface runoff, water yield, and sediment and nutrient yields (same line as in 3.).
- 5. If results in line 4 are not reasonable check individual subarea contributions (use last table or for more detail see SUMMARY TABLE).

RUNOFF PROBLEMS--THINGS TO CHECK

1. **PET** is not reasonable:

Try another PET eq that may be more appropriate for the site. Hargreaves is the most robust and can be adjusted by varying the coefficient (PARM(23)0.0023-0.0032) or the exponential (PARM(34) 0.5-0.6) in PARM0604.DAT. Penman-Monteith is generally considered the most accurate but is sensitive to wind speed which is subject to measurement errors. It can also be adjusted through the stomatal conductance coefficient (PARM(1)1.0-2.0) in PARM0604.DAT. The Baier-Robertson equation developed in Canada is a good choice in cold climates.

2. **ET is not reasonable:**

Crop growing season may be incorrect--check planting and harvest dates and potential heat units (CRG.OPS). Also check harvest time each year in TXBELL.OUT for the value of HUSC (look for CORN YLD=). HUSC should normally range from 1. to 1.2. If HUSC is < 1. PHU is too large or harvest date is too early. If HUSC is > 1.2 PHU is too small or harvest date is too late. For many annual crops the value of HUSC should be set to 1.2 using an early harvest date (CRG.OPS). Harvest can't occur until the input harvest date and then only after the accumulated heat units have reached the input HUSC value. Forage crops may be grazed too closely or cut too often to allow leaf area to develop properly for normal plant water use.

3. Check Runoff equations:

NRCS curve number equation:

The CN equation varies with soil water. APEX has four different methods of linking CN and soil water plus a constant CN option. The methods are:

- 1 Variable daily CN nonlinear CN/SW with depth soil water weighting.
- 2 Variable daily CN nonlinear CN/SW no depth weighting.
- 3 Variable daily CN linear CN/SW no depth weighting
- 4 Non-Varying CN--CN2 used for all storms.
- 5 Variable Daily CN SMI (Soil Moisture Index)

Generally the soil moisture index (5) is the most robust and reliable because it is not sensitive to errors in soil data. This method is adjustable using PARM(42) (PARM0604.DAT). PARM(42) usually is in the range 0.5-2.0 (small values reduce runoff). The nonlinear forms (1,2) also perform very well in many situations. The constant CN method (4) is a good choice when soil water is not a dominant factor.

Green and Ampt infiltration equation:

The G&A equation is available for use in special cases where CN is not performing well.

The three variations of G&A are:

- 1 Rainfall intensity is simulated with a double exponential distribution and peak rainfall rate is simulated independently.
- 2 Same as (1) except peak rainfall rate is input.
- 3 Rainfall intensity is uniformly distributed and peak rainfall rate is input (useful in rainfall simulator studies).

4. **Routing:**

Considerable runoff can be infiltrated into floodplains depending on travel time and floodplain saturated conductivity (minimum of FPSC input in APEXCONT.DAT or floodplain second soil layer SC).

Flow through a routing reach can be increased by return flow from groundwater and quick return flow. Maximum groundwater storage, groundwater residence time, and ratio of return flow to return flow + deep percolation can be set in APEXCONT.DAT. These values are overriden by values >0. on line 2 of *.SOL. Groundwater storage must exceed a threshold value (PARM(40) PARM0604.DAT) before return flow occurs.

5. **Erosion/sedimentation problems:**

- 1. Runoff must be realistic.
- 2. Crop growth must be realistic to provide proper cover and residue.
- 3. Tillage must mix residue with soil properly.
- 4. Erosion equations:

The USLE and five modifications are available. MUSLE, MUSS, and MUST usually give similar results and are appropriate for estimating sediment yield from small watersheds up to about 250 km². The USLE is an erosion equation that is useful in studies like assessing the effect of erosion on productivity.

6. Slope length and steepness factor:

Both USLE and RUSLE equations are available. RUSLE is preferred for steep slopes > 20%.

7. **Routing:**

Net deposition or degradation can occur as sediment is transported through a routing reach. Values of deposition and degradation are shown for each reach in the last table in *.OUT (AVERAGE ANNUAL DATA). The delivery ratio of the channel/floodplain system is obtained by dividing YO by YI (WATERSHED SUMMARY TABLE). This is not a true watershed delivery ratio because deposition occurs within the subareas. Thus, YO/YI should generally range from 0.5 to 0.95.

Problems:

- (1) Channel and floodplain geometry not well defined. Under estimating channel capacity causes excessive floodplain flow and thus deposition and floodplain scour. Over estimating channel capacity may cause large erroneous delivery ratios. Valley section surveys are desirable but almost never available. GIS lacks detail particularly for channel dimensions. In the absence of good data it is best to let the model estimate channel and floodplain dimensions. Values of channel capacity flow rate (QG in mm/h), bottom width/depth (BWD), and floodplain width/channel width (FCW) can be input in APEXCONT.DAT. Many natural channels can accommodate a 2 year frequency flow rate.
- (2) The channel cover and soil erodibility factors poorly estimated. The USLE C

(RCHC) and K (RCHK) factors are input on the fifth line of each subarea in *.SUB. If the product of these factors is extremely low (0.001) very little channel erosion will occur regardless of flow conditions. If the product is large (0.3) severe channel erosion may result.

(3) The sediment concentration at a 1.0 m/s velocity (PARM(19)) in PARM0604.DAT may not be appropriate for the watershed. The concentration in t/m³ should normally range from 0.05 to 0.25. This is the base concentration used in the routing equation. High values cause over estimation of sediment transport.

8. **Crop growth:**

1. In *.OUT go to AVE ANNUAL CROP YLD and AVE STRESS DAYS. The stress days reveal the stresses that are constraining crop growth.

Root growth stresses of bulk density (BD) or aluminum saturation (ALSAT) can reduce crop yields greatly. Go to SOIL PHYSICAL DATA and check for unreasonably high BD. Go to SOIL CHEMICAL DATA and check for high aluminum saturation values > 90 caused by low pH <5. BD can be lowered by deep tillage or simply corrected if the data are erroneous. Aluminum saturation can be lowered by applying lime or by correcting erroneous pH data.

Water stress is the most common constraint to crop growth. Excessive PET or runoff estimates are major causes. Plant available water is another important limitation that causes water stress. Erroneous estimates of plant available water occur when field capacity or wilting point are incorrect. Soil water storage is particularly important in dry climates.

Nitrogen and Phosphorus stress is caused by low mineralization rates, inadequate fertilizer, or excessive leaching of N. Go to SOIL CHEMICAL DATA and examine organic N, P, and C. C/N should be near 10. N/P should be near 8. The mineralization rate can be increased by decreasing the number of years of cultivation at the beginning of simulation (*.SOL line 3). Check N leaching in the last table (AVERAGE ANNUAL DATA) under QNO3. If large values relative to annual N fertilizer are found go to SUMMARY TABLE and look at PRKN and PRK. High percolation values (PRK) may result from low ET or runoff, low soil plant available water storage (FC - WP), or high saturated conductivity values. PRK is sensitive to the user choice to use manual irrigation applications of rigid amounts.

4.6 APEX****.OUT (THE DETAILED SIMULATOR OUTPUT FILE)

The APEX****.out file is far too lengthy and detailed to discuss each line of the file. The following listing describes the major sections of the file for reference purposes:

1. Input parameters

APEXfile.DAT listing

Run#

Weather data

Management data

Crop

Subarea

Soil

Routing Reach

Reservoir

Routing Scheme

2. Output

Simulation results

Summary

CHAPTER 5

VALIDATION

5.1 VALIDATION OF CROP YIELDS

USER NOTE OF CAUTION: If a multiple-run has been executed (denoted by a value greater than zero in col. 4 in MLRN0604.DAT) and the pre-run results are of no interest, then open *.out and go to or find "TOTAL WATER BALANCE". The applicable simulation results follow this section beginning with a new apex descriptive title. Likewise, use only the second set of results given in *.man. *.asa, *.asw, *.wss, *.msw, etc. files.

TO CHECK THE ACCURACY OF AVERAGE CROP YIELDS OVER ALL YEARS AND SUBAREAS IN A WATERSHED, open the *.man file. Read below the columns "YLD1" and "YLD2"; the first number is the average grain yield and the second, the average forage yield over the number of years simulated. Copy this file to EXCEL or ACCESS to average the yields for each crop across subareas. Then compare the average watershed yield with the historical yield reported in the watershed. (If historical yields are available for specific years, make the APEX run using a daily weather file for the years in question specified in line 13 of the *.sit file). If one or more crop yields are not accurate, follow the list of instructions below to produce more accurate yields:

• First, check the accuracy of soil depths if specific simulated yields are low-

To determine if soil depth and the important related water-holding capacity is curtailing a specific crop yield, open the *.man file where both grain and forage yields (YLD1 and YLD2) are listed by crop and subarea. Unusually low yielding soils can be identified by referring to the specific subarea number in the *.sub file. Data entry errors in the depth of soil data can be checked by opening the appropriate *.sol file and referring to the accumulated depth (m) of the last soil layer.

• Second, check the accuracy of the heat units from planting to harvest-

After completing a run if automatic heat unit scheduling is <u>not</u> selected in APEXCONT.DAT (line 1: IHUS), open the *.out file and find "TOTAL WATER BALANCE", scroll down a few lines to the beginning of the appropriate simulation to "SA(# ID)". Scroll down until a "HARV" operation is found. This is a list of harvest operations in year 1 for each subarea. Scroll to the right to HUSC= for each crop harvested. If any HUSC values for a crop are outside the range of 0.9 to 1.1, scroll down to check following years. If all years are outside the range, check both the planting (above the harvest operations) and the harvest date for accuracy. If they are accurate to the best of your knowledge, then open the appropriate *.ops file(s) which contains the specific crop for which the heat units need adjusted. If HUSC in the *.out file is less than 1.0, decrease the heat units at the planting operation and if greater than 1.0, increase the heat units.

If automatic heat unit scheduling **is** selected in APEXCONT.DAT (line 1: IHUS), open the *.out file and follow the same procedure as above except instead of changing the heat units, change either the plant or harvest date to result in a more optimum HUSC = approx. 1.0 in the *.out file for the HARV operation.

• Third, check the plant population for accuracy-

If a crop yield is too low, check the plant population in the *.ops file. Correct to the best of your knowledge. Increasing (Decreasing) it will increase (decrease) the simulated yield.

• Fourth, check plant stress levels if a crop yield is low-

To determine the cause of stress to biomass and root development from lack of water, nutrients, bulk density, excessive aluminum toxicity, or insufficient air for biomass or roots, open the *.out file and find 'TOTAL WATER BALANCE" and then find "AVE ANNUAL CROP YLD DATA". If the crop of interest is not in the first listing, scroll down to subsequent listings. Then scroll to the right of the screen and view the stress days for the crop. If a large number of days of N stress are observed, for example, open the *.ops file(s) that contains the stressed crop(s) and add more N fertilizer; continue to do the same for the crop(s) with P stress, and if irrigation is being applied manually and water stress days are high, add more irrigations if appropriate. In contrast, if air stress days are high in either roots or biomass, reduce irrigation applications. Aluminum toxicity stress is usually a soil condition treated by adding lime (automatically applied if selected in the *.sub file, line 7). If soil bulk density causes root stress, check all *.sol file(s) for errors in the bulk density data entries for each subarea that produces the affected crop.

• Fifth, check the leaf area index (MXLA)-

To determine if the leaf area setting is inadequate for optimum yields of a crop, open *.out and find "CROP PARAMETERS". Scroll down to a row indicating "MXLA" for the value of a low yielding crop and compare it with the value "DMLA" in line 1 of the CROP0604.DAT file for the appropriate crop. In the Crop Parameters table each row with the same parameter name a different

subarea. If the two leaf area indices are near equal and the crop yield is low, increase the index value in CROP0604.DAT.

• Sixth, revise the Harvest Index and Biomass-Energy Ratios-

If after the first five checks are completed and crop yields remain inaccurate, some basic crop parameters can be revised as a last resort. Normally these parameters are not to be revised, being accurate for crops in the U.S. They may need to be revised slightly for international use. In CROP0604.DAT, the harvest index (HI) relates to the grain yield only as a ratio of the above-ground biomass. The higher (lower) the ratio, the more (less) grain yield reported for a given level of biomass. Similarly, the biomass to energy ratio (WA) increases (decreases) yields through biomass changes and, therefore, both grain and forage yields increase (decrease).

5.2 MODEL ADJUSTMENT FOR VALIDATING RUNOFF AND SEDIMENT LOSSES

METHOD 1: FOR THE LAYMAN USER

USER NOTE OF CAUTION: If a multiple-run has been executed (denoted by a value greater than zero in col. 4 in MLRN0604.DAT) and the pre-run results are of no interest, then open *.out and find "TOTAL WATER BALANCE". The applicable simulation results follow this section beginning with a new apex descriptive title. Likewise, use only the second set of results given in *.man. *.asa, *.asw, *.wss, *.msw, etc. files.

TO CHECK THE ACCURACY OF SIMULATED RUNOFF/SEDIMENT LOSSES AND SEDIMENT LOSSES FOR THE WATERSHED OUTLET, open the *.asw file for the yearly simulated losses and consult your APEX0604 manual for the definitions of the column headings. If QTW values for the years being validated are unacceptable, usually YW will also be in error, follow the instructions below:

• First, check land use values-

Correct runoff/sediment losses by checking the accuracy of estimated curve numbers that dictate runoff/sediment losses. This may be done by checking the land use number in line 2 (LUN) of each *.ops file. If multiple crop rotations are used, simulated runoff/sediment losses accuracy will be enhanced if LUN is revised at planting and harvest of each crop by entering a value on the appropriate operation line.

Second, check hydrologic soil group values-

Correct runoff/sediment losses by checking the accuracy of the hydrologic soil group in line 2 (HSG) in each of the *.sol files.

• Third, check upland and channel hydrology values-

Correct runoff/sediment losses by checking the hydrology of the subareas. Open the *.out file and find "SUBAREA HYDROLOGIC DATA" which describes the channel and upland hydrology of each subarea. Note: check the accuracy of each subarea upland and channel slopes.

Fourth, check the subarea and watershed size-

Correct runoff/sediment losses by checking the number of watersheds and their areas for accuracy. Open the *.wss file and check the accumulated area in the last line of the WSA column and then each subarea above

Fifth, check monthly and annual rainfall values-

Correct runoff/sediment losses by checking the simulated monthly and annual rainfall for the years being validated in the *.wss file.

Sixth, check the saturated conductivity values for soils-

Correct runoff/sediment losses by checking the accuracy of the saturated conductivity values of each soil.

• Seventh, check the accuracy of the erosion control practice factor-

Correct runoff/sediment losses by checking the accuracy of the erosion control practice factor in line 9 (PEC) of each *.ops file.

Eighth, check the choice of water erosion equation-

For watershed analyses, sediment losses need to be indicated with the recommended choices of #3 (MUSS) or #0 (MUST).

• Ninth, revise the method of calculating the daily adjusted curve numbers-

Revise the method of calculating daily adjusted curve numbers in line 2 of each *.sub file. Usually #4 or #0 are recommended.

• Tenth, revise the irrigation runoff ratios if irrigation operations are used-

Revise the global irrigation runoff ratio in line 8 of each *.sub file or for individual irrigation applications, the runoff ratio may be entered on the line of the irrigation operation in each *.ops file having irrigated crops. NOTE: if automatic irrigation has been selected with a value = 0.0 in line 7 (NIRR) of each *.sub file that is irrigated, irrigation runoff will be significantly lower than when using rigid applications of the amounts indicated in the *.ops files.

• Eleventh, revise the value of Parm (42)-

Revise the value of Parm(42) which has a range of 0.5 to 1.5. Higher values increase runoff/sediment losses and vise versa.

METHOD 2: FOR THE TECHNICAL USER

USER NOTE OF CAUTION: If a multiple-run has been executed (denoted by a value greater than zero in col. 4 in MLRN0604.DAT) and the pre-run results are of no interest, then open *.out and find "TOTAL WATER BALANCE". The applicable simulation results follow this section beginning with a new apex descriptive title. Likewise, use only the second set of results given in *.man. *.asa, *.aws, *.wss, *.msw, etc. files.

TO CHECK THE ACCURACY OF SIMULATED RUNOFF/SEDIMENT LOSSES AND SEDIMENT LOSSES FOR THE WATERSHED OUTLET, open the *.aws file for the yearly simulated losses and consult your APEX0604 manual for the definitions of the column headings. If QTW values for

the years being validated are unacceptable, usually YW will also be in error, follow the instructions below:

✓ What type of runoff is in error, Q, SSF, QRF, QDRN, or RTF? If Q and/or QDRN are in error, follow the next twelve steps. If SSF, QRF, and RTF are in error, go to the next $\sqrt{\text{item}}$.

• First, check land use (curve number) values-

Correct runoff/sediment losses by checking the accuracy of estimated curve numbers that dictate runoff/sediment losses. This may be done by checking the land use number in line 2 (LUN) of each *.ops file. If multiple crop rotations are used, simulated runoff/sediment losses accuracy will be enhanced if LUN is revised at planting and harvest of each crop by entering a value on the appropriate operation line. NOTE: Land use numbers may be substituted with curve numbers.

• Second, check the saturated conductivity values for soils-

Correct runoff/sediment losses by checking the accuracy of the saturated conductivity values of each soil in the *.sol files.

Third, check hydrologic soil group values-

Correct runoff/sediment losses by checking the accuracy of the hydrologic soil group in line 2 (HSG) in each of the *.sol files. This value should be consistent with the % sand, % silt, and the residual % clay.

Fourth, check upland and channel hydrology values-

Correct runoff/sediment losses by checking the hydrology of the subareas. Open the *.out file and find "SUBAREA HYDROLOGIC DATA" which describes the channel and upland hydrology of each subarea. Note: check the accuracy of each subarea upland and channel slopes.

Fifth, check the subarea and watershed size-

Correct runoff/sediment losses by checking the number of watersheds and their areas for accuracy. Open the *.wss file and again go to the second set of results to check the accumulated area in the last line of the WSA column and then each subarea above.

• Sixth, check monthly and annual rainfall values-

Correct runoff/sediment losses by checking the simulated annual rainfall for the years being validated in the *.aws file. To determine the monthly average rainfall for the years simulated, open the *.wss file and again go to the second set of results to find the row with "PRCP".

• Seventh, check the accuracy of the erosion control practice factor-

Correct runoff/sediment losses by checking the accuracy of the erosion control practice factor in line 9 (PEC) of each *.sub file.

• Eighth, check the choice of water erosion equation-

For watershed analyses, open APEXCONT.DAT, line 5 (DRV), where sediment losses need to be indicated with the recommended choices of #3 (MUSS) or #0 (MUST).

• Ninth, revise the method of calculating the daily adjusted curve numbers-

Revise the method of calculating daily adjusted curve numbers in line 2 of each *.sub file. Usually #4 or #0 are recommended. The choice made for a run can be checked by opening *.out and finding "VARIABLE CN".

• Tenth, revise the irrigation runoff ratios if irrigation operations are used-

Revise the global irrigation runoff ratio in line 8 of each *.sub file or for individual irrigation applications, the runoff ratio may be entered on the line of the irrigation operation in each *.ops file having irrigated crops. NOTE: if automatic irrigation has been selected with a value = 0.0 in line 7 (NIRR) of each *.sub file that is irrigated, irrigation runoff will be significantly lower than when using rigid applications of the amounts indicated in the *.ops files.

• Eleventh, revise the land uses-

\To check the accuracy of the land use by major land use category such as forest, grass, and crops, open the *.out file and find "LAND USE SUMMARY". This listing provides the proportionate breakdown of the watershed into the land uses by crop or other use. NOTE: Since runoff and erosion are highly correlated with cropland and its land condition (straight row, contoured, contoured and terraced), carefully verify the proportion of each crop in the watershed in this listing.

• Twelfth, revise the value of Parm (42)-

Revise the value of Parm(42) which has a range of 0.5 to 1.5. Higher values increase runoff/sediment losses and vise versa.

✓ To check another runoff component: RTF-

• Open APEXCONT.DAT and determine the value of RFPO on line 4, fourth variable. If this is 0.0, change it to 0.01 or higher until you have validated RTF.

To check other runoff components: SSF and QRF-

Open each *.sol file and determine the value for each layer of HCL, line 23. If this is 0.0, change it to 0.1 or higher until SSF and/or QRF are validated.

After validating runoff, check MUST or MUSS for accuracy.

• To validate erosion, adjust PARM 19 for a more accurate simulation of MUST/MUSS.

APPENDICES

APPENDIX A—WATERSHED DEFINITIONS

TITLE	TITLE2	DIFF	Max	Min
Name	Watershed Name	Watershed Name; Watershed is the area of land that catches rain and snow and drains or seeps into a marsh, stream, river, lake or groundwater. Homes, farms, ranches, forests, small towns, big cities and more can make up watersheds. Some cross county, state, and even international borders. Watersheds come in all shapes and sizes. Some are millions of square miles; others are just a few acres. Just as creeks drain into rivers, watersheds are nearly always part of a larger watershed. Watershed Name is the name user give for this area.		
APM	Peak runoff rate	Peak runoff rate; the peak runoff-rate-rainfall energy adjustment factor (APM); provides a means for fine tuning the energy factor used in estimating water erosion. APM value of 1 is normal range is 0.5 - 1.5		
YLAT	Latitude	Latitude; the latitude of watershed in decimal degrees range is -90 to 90		
YLOG	Longitude	Longitude; the longitude of watershed in decimal degrees range is -180 to 180		
ELEV	Elevation	Elevation; Average watershed elevation		
BCHL	SWAT basin channel length	SWAT basin channel length (m); needed to get output to SWAT tables.		

BCHS	SWAT basin channel slope	SWAT basin channel slope (%); needed to get output to SWAT tables.	1	0
CO2X	CO2 concentration in atmosphere (PPM)	CO2 concentration in atmosphere (PPM); a non zero value overrides CO2 input control file	1000000	0
CQNX	NO3 concentration in irrigation water (PPM)	NO3 concentration in irrigation water (PPM); a non zero value overrides CNO30 input control file	1000000	0
RFNX	Ave concentration of N in rainfall (PPM)	Ave concentration of N in rainfall (PPM)	1000000	0
UPR	P uptake rate (Manure application)	P uptake rate (Manure application); auto. manure application rate to meet P removal by crop (Est. yearly P removed by crop yield / total fraction of mineral + organic P in manure)	100000	1000
UNR	N uptake rate (Manure application)	N uptake rate (Manure application); auto. manure application rate to meet N removal by crop (Est. yearly N removed by crop yield / total fraction of mineral + organic N in manure)	100000	1000
WITH	Weather Station	Weather Station; Nearest Weather Station to the center of watershed Note: The Weather Station is used only if the variable NGN in the Control file equals -1 "	0	0

APPENDIX B—SUBAREA DEFINITIONS

TITLE	TITLE2	UNITTYPE	UNITS	DIFF
IPTS	POINT SOURCE NUMBER		0	Point Source Number
IDF3	Not Used		0	Not Used
CNUM	County Name		0	County Name; the name of the county from which the soil list comes.
INPS	Soil number	Select Soil	0	Soil number; number soil from the soil list.
IOPS	Operation schedule	Select Cropping System	0	Operation Schedule; from the operation schedule list. Note: if Cropping System = Dryland, then Irrigation Auto Trigger (BIR) must be = zero. If Owner has herds and this is a feedlot subarea, then fallow (one crop only) is the only crop that can be used. If feed lot has a lagoon, then Irrigation must be set as a Lagoon Irrigation type.
LCNO	Land Condition		0	LCNO (Land Condition); is used to find the curve number, for the selected crop(s), when building the .ops file.
IOW	Owner ID	Select Owner	0	Owner ID; must be entered.
II	Feeding area	Whole Number 0 or 1	0	Feeding area; II=0 for non feeding area; II=1 for enclosed feeding area. Note: If II = 0, then Fraction of Subarea controlled by lagoon (DALG) must be = 0.
IAPL	Auto. Manure Feedlot ID	-1 to 1	0	Auto. Manure Feedlot ID; = 0 non-manure application area. Use the positive subarea ID of the feedlot to indicate solid manure application and the negative subarea ID of the feedlot (lagoon) to indicate liquid manure application. Note: This subarea and the Auto. Manure Application subarea, must be owned by the same owner.
IFLS	Filter Strip Code	Whole Number 0 or 1	0	Filter Strip Code; = 0 for normal subarea; = 1 for filter strip Note: If IFLS=1 then Fraction of Floodplain Flow must be = 1 for a smooth terrain; = 0.1 - 0.5 for rough terrain. Note: Fraction of Floodplain Flow will be changed automatically to 1 and Buffer/Floodplain Width will be = (Drainage Area * 10) / Routing Reach Length when filter strip is change to 1.
NVCN	Soil Moisture Index	Whole Number 0 or 4	0	Soil Moisture Index; 0 = Variable Daily CN Nonlinear CN/SW with depth soil water weighting; 1 = Variable Daily CN Nonlinear CN/SW no depth weighting; 2 = Variable Daily CN Nonlinear CN/SW no depth weighting; 3 = Non-Varying CNCN2 used for all storms; 4 = Variable daily CN SMI (Soil Moisture Index)".
WITH	Daily Weather Station		0	Daily Weather Station; used only if the variable NGN in control table is greater than 0. Note: you must have .dly(s) to use this option.
SNO	Water content of snow	(MM)	2	Water content of snow (MM); snow on ground at start of simulation.
STDO	Standing dead crop residue	t/ha	3	Standing dead crop residue (t/ha)

LONG	X Coordinate of subarea centroid.		0	X Coordinate of subarea centroid; longitude of subarea centroid. This needs to be entered if Spatially Generated Weather option is being used. Spatially Generated Weather is set by entering 0 in the variable NGN in control table. Note: Use the "minus" degree for the western hemisphere.
LAT	Y Coordinate of subarea centroid.		0	Y Coordinate of subarea centroid; latitude of subarea centroid. This needs to be entered if Spatially Generated Weather option is been used. Spatially Generated Weather is set by entering 0 in the variable NGN in control table. Note: Use the "minus" degree for the western hemisphere.
WSA	Subarea size	(ha)	11	Size of Subarea (ha), Note: If this is a second extreme and it's flow joins the first extreme area flow but does not flow through the first extreme area, a "minus" sign is added to the front of the second extreme area. WSA makes it a negative number (this tells the program to add the second area WSA to the first extreme area as it relates to water flow).
CHL	Longest Distance From Outlet	(km)	13	Distance From Outlet to Most Distant Point in Subarea (CHL) (km or miles) The channel length is the distance along the channel from the most distant point on the subarea to the outlet. Often in small areas (approx. 1 ha) there is no defined channel. In such cases the length is measured along a concentrated flow path or it can simply be estimated from the length-width ratio of the subarea. For areas < 20 ha, the channel length measurement is not critical. In such cases, enter 0. Units are kilometers (metric) or miles (English). If this is a EXTREME subarea then Channel Length of Routing Reach MUST EQUAL Distance from Outlet. If this is a DOWNSTREAM subarea then Channel Length of Routing Reach can NOT BE EQUAL to Distance from Outlet.
CHD	Channel depth	m	6	Channel depth (m)
CHS	Channel slope.	m/m	15	Mainstream channel slope (m/m), the average channel slope is computed by dividing the difference in elevation between the watershed outlet and the most distant point by CHL. For small areas this measurement is not critical because CHL and CHS are only used in estimating the watershed time of concentration. The dominant portion of the time of concentration is involved with overland rather than channel flow in small watersheds.
CHN	Channel roughness Manning's N		0	See Appendix G—Routing Reach & Channel Manning's N (RCHN & CHN)
STP	Average Upland Slope	m/m	15	Average Upland Slope (m/m); must be entered. The average watershed slope can be estimated from field measurement or by using the Grid-Contour Method (Williams and Berndt 1977).
SPLG	Ave Upland Slope Length	m	6	Ave Upland Slope Length (m); Must be entered. The watershed slope length can be estimated by field measurement as described by Wischmeier and Smith (1978) or from topographic maps using the Contour-Extreme Point Method (Williams and Berndt 1977).
UPN	The surface roughness Manning's N		0	Appendix F—Manning's N Surface Roughness (UPN)
FFPQ	Fraction of Buffer/floodplain flow		0	Fraction of buffer/floodplain flow; Partitions flow through filter strips.

RCHL	Routing Reach Length	km	13	Length of Routing Reach (RCHL) in (km or miles); The length (distance) between where channel starts or enters the subarea and where it exits the subarea. If this is an EXTREME subarea, then Routing Reach Length MUST EQUAL Longest Distance from Outlet (CHL). If this is a DOWNSTREAM subarea, then Routing Reach Length can not be equal to Longest Distance from Outlet.
RCHD	Channel Depth of Routing Reach	m	6	Channel Depth of Routing Reach (m)
RCBW	Bottom Width of Channel of Routing Reach	m	6	Bottom Width of Channel of Routing Reach (m)
RCTW	Top Width of Channel of Routing Reach	m	6	Top Width of Channel of Routing Reach (m)
RCHS	Channel Slope of Routing Reach	m/m	15	Channel Slope of Routing Reach (m/m); Must be entered.
RCHN	Channel Mannings N of Routing Reach.		0	See Appendix G—Routing Reach & Channel Manning's N (RCHN & CHN)
RCHC	USLE Crop Mangement Channel Factor		0	USLE Crop Management Channel Factor. For example, with bare channel condition, RCHC should be 0.1-0.6 and if the channel has very good land cover, it should take on a value of 0.0001 (0.0001 - 0.6).
RCHK	USLE Erodibility Channel factor		0	USLE Erodibility Channel factor. For example, with a rock condition, RCHK should be 0.0001; with loess (silt/mud) condition, it should take on a value of 0.30. (0.0001 - 0.5).
RFPW	Buffer/Floodplain width	m	6	Buffer/Floodplain width = (Drainage Area (WSA) X 10000) / (Floodplain length (RFPL) X 1000).
RFPL	Buffer/Floodplain length	km	13	Buffer/Floodplain length (km)
RSEE	Elev of emergency spillway	M	6	Elevation at emergency spillway elevation (m).
RSAE	Total reservoir surface area	ha	11	Total reservoir surface area at emergency spillway elevation (km).
RSVE	Runoff volume	mm	2	Runoff volume at emergency spillway elevation (mm).
RSEP	Elev of principal spillway	M	6	Elevation at principal spillway elevation (m).
RSAP	Total reservoir surface area	ha	11	Total reservoir surface area at principle spillway elevation (ha).
RSV0	Volume at principal spillway elevation	mm	2	Volume at principal spillway elevation (mm).
RSV	Initial reservoir volumes	mm	2	Initial reservoir volumes (mm).
RSRR	Average principle spillway release rate	mm/hr	61	Average principle spillway release rate (mm/hr).
RSYS	Initial sediment concentration in reservoirs		0	Initial sediment concentration in reservoirs (ppm).
RSYN	Normal sediment concentration in reservoirs		0	Normal sediment concentration in reservoirs (ppm).

RSHC	Hydraulic conductivity of reservoir bottoms	mm/hr	61	Hydraulic conductivity of reservoir bottoms (mm/hr).
RSDP	Time required for the sediment to return to normal		0	Time required for the sediment to return to normal; time required in days for the sediment in the reservoir to return to the normal concentrations following a runoff event.
RSBD	Bulk Density of Sediment in reservoir	T/M^3	36	Bulk Density of Sediment in Reservoir (T/M^3)
NIRR	Rigidity of irrigation code		0	Rigidity of irrigation code; for flexible applications. Applies minimum of FC-SW and ARMX. 1 for rigid applications; Applies input amount or ARMX. The irrigation code is used to specify the irrigation strategy. There are two mode of irrigating manual and automatic. If manual irrigation is selected, irrigation occurs on user specified dates and volumes. 0 = the irrigation is applied when needed and only as much as is needed;. 1 = the application is according to the amounts specified, either by automatic application (ARMX) or by user input amounts and restrictions.
IRR	Irrigation Code		0	Irrigation Code; IRR is set by change Operation schedule (IOPS) Irrigation Code 0 = dryland, 1 = sprinkler irrigation, 2 = flood/furrow irrigation, 3 = fertigation, 4 = lagoon, and 5 = Drip irrigation. The irrigation code is used to specify whether irrigation is used and the type of irrigation. If flood/furrow irrigation is specified irrigation induced erosion is calculated. If fertigation is specified, IDFT identifies the type of fertilizer and FNP the amount of fertilizer with each irrigation. If lagoon is specified the concentration in tons of soils per m**3 of effluent is specified by FNP and the nutrient fraction by creating a fertilizer in the Fert1310.DAT file with the appropriate nutrients and selecting it with IDFT.
IRI	Min. application interval for auto. Irrigation	days	0	Minimum Application Interval for automatic irrigation (days); If IRR = 0 then set IRI = 0.
IFA	Min. fertilizer application interval	days	0	Minimum fertilizer application interval (days); for auto option.
LM	Liming Code		0	Liming Code; 0 = applies lime automatic; 1 = applies no lime.
IFD	Furrow Dike Code		0	Furrow Dike Code; 0 = does not use a furrow dike system; 1 = considers a furrow dike system.
IDR	Drainage code	mm	2	Drainage code; 0 = no drainage or enter depth to drainage system (mm).
IDF01	Liquid Fertilizer Number		0	Liquid Fertilizer Number; from Lagoon, Select fertilizer from lists provided (FERT.DAT) or NONE. (MNUL in Control File MUST BE SET).
IDF02	Solid Manure From Feeding Area Stock Pile		0	Solid Manure From Feeding Area Stock Pile; automatic solid manure application from feeding area stock pile only. Fertilizer number or NONE. (FNP5 must be set and MNUL in Control File MUST BE SET).
IDF04	Automatic commercial Fertilizer Application		0	Automatic commercial application; fertilizer number or NONE. (defaults to ELEM N) (BFT must be set), (FNP5 must be set).
IDF05	Automatic Solid Manure Application		0	Automatic solid manure application; fertilizer number or NONE. (As needed) (FNP5 must be set and MNUL in Control File MUST BE SET).

BIR	Irrigation Auto Trigger		0	Irrigation Auto Trigger; Water stress factor to trigger automatic irrigation. To trigger automatic irrigation, the water stress factor is set: BIR= 0.0 Allows plants to be affected water stress; 0.8 BIR > 0.0 AND BIR < 1.0 fraction of plant stress; BIR = 1.0 Does not allow water stress; BIR < 0.0 Plant available water deficit in root zone (-mm); BIR > 1.0 For soil water tension Kilopascals in top 200mm - 1000.0 Sets water deficit high enough that only manual irrigations will occur.
EFI	Runoff Irrigation		0	Runoff Irrigation; runoff vol/vol irrigation water applied. The irrigation runoff ratio specifies the fraction of each irrigation application that is lost to runoff.
VIMX	Max. annual irrigation volume	mm	2	Maximum annual irrigation volume (mm); allowed for each crop.
ARMN	Min. single application volume	mm	2	Minimum single application volume (mm); allowed for auto irrigation .
ARMX	Max. single application volume	mm	2	Maximum single application volume (mm); allowed for auto irrigation.
BFT	Auto Fert. Trigger (proportion)		0	Auto Fert. Trigger; N stress factor to trigger auto fertilization. When the plant nitrogen stress level reaches BFT, nitrogen fertilizer may be applied automatically. 0.00 For manual fertilizer. 0.80 0. $<$ bft $<$ 1.0 allows percentage of stress 1.00 no N stress, auto-fertilization when needed. If BFT is greater than 1, BFT is the PPM (G/T) N in soil at which automatic fertilizer is triggered. (Activated only if IDF0 = 4)
FNP4	Auto Fert. Application Rate (N)	km	32	Auto Fert. Application Rate (N); 0 variable rate of automatic commercial application (amount of fert applied as need to lower N stress); fixed rate of automatic commercial application (set amount of fert. applied each time N stress is reached). Note: BFT (Auto Fert. Trigger (proportion)) must be set, IDF0 (Auto Fert. Type) must be set to 4 and IDF04 (Automatic commercial fertilizer Application) can not be 0 for this variable to work.
FMX	Max. annual N fertilizer applied for a crop	kg/ha	4	Maximum annual N fertilizer applied for a crop (kg/ha).
DRT	Time requirement for drainage system to end plant stress		0	Time requirement for drainage system to end plant stress (days).
FDSF	Fraction of furrow dike volume		0	Fraction of furrow dike volume available for water storage.
PEC	Erosion control practice factor		0	Erosion control practice factor; The erosion-control-practice factor normally ranges from about 0.1 to 1.0 depending upon the effectiveness of the conservation practice. Default = 1.0 for non-contoured fields.
DALG	Fraction of Feed Lot Subarea controlled by lagoon.		0	Fraction of Feed Lot Subarea controlled by lagoon. (Needed only when $IRR = 4$).
VLGN	Normal Lagoon Volume		0	Normal Lagoon Volume/Maximum (fraction); Normal Lagoon Volume as a fraction of Maximum Lagoon Volume. (Needed only when IRR = 4) Note: If Fraction of Subarea controlled by lagoon (DALG) = 0 then VLGN must = 0.

COWW	Lagoon input from wash water		0	Lagoon input from wash water in m**3/animal unit/day. (Needed only when IRR = 4 and owner has at least one head) (Average Normal is .015) Note: If Fraction of Subarea controlled by lagoon (DALG) = 0 then COWW must = 0.
DDLG	Time to reduce lagoon storage from maximum to normal in days.	days	0	Time to reduce lagoon storage from maximum to normal in days. (Needed only when IRR = 4) Note: If Fraction of Subarea controlled by lagoon (DALG) = 0 then DDLG must = 0.
SOLQ	Ratio Liquid/Total manure applied		0	Ratio Liquid/Total manure applied in this Feed Lot Subarea; fraction of total manure produced that goes into a lagoon. (Needed only when IRR = 4) Note: If Fraction of Subarea controlled by lagoon (DALG) = 0 then SOLQ must = 0.
FNP5	Automatic Manure application rate	kg/ha	4	Automatic Manure application rate. (Activated only if IDF0 = 2 or 4).
SFLG	Safety factor for Lagoon spillover		0	Safety factor for Lagoon spillover (fraction 0_1). (Needed only when IRR = 4).
NY	Select Herd(s) Eligible For Grazing This Crop		0	Select herd (s) eligible for grazing this crop; Select none for no herd used in this Subarea or select herd (s) eligible to feed in area. If herd is selected set the grazing lower limit of feed in the pasture area (Grazing limit for each herd Min. Plant Material (t/ha))Grazing lower limit of feed in pasture for this herd before supplementary feed, what the Minimum Plant Material can be. Note: Management budget must have a Start Graze operation for this Crop before head graze. If Owen has no herds (from Owner table) then NY and XTP field can not be set If Min Fraction Of Day is set to 1 (in Owner table) the herd will not show up in select list.
XTP	Grazing limit for each herd Selected Min. Plant Material	t/ha	4	Select herd(s) eligible for grazing this crop; Select 'none' for no herd used in this Subarea or select herd(s) eligible to feed in area. If heard is selected, set the grazing lower limit of feed in the pasture area (Grazing limit for each herd Min. Plant Material (t/ha)). Grazing lower limit of feed in pasture for this herd before supplementary feed, what the Minimum Plant Material can be. Note: Management budget must have a Start Graze operation for this Crop before head graze. If Owner has no herds (from Owner table) then NY and XTP field can not be set. If Min Fraction Of Day is set to 1 (in Owner table) the herd will not show up in select list.

APPENDIX C—WATERSHED NAME DEFINITIONS

TITLE	TITLE2	DIFF
DALG	Feed Lot Subarea Controlled By Lagoon	Fraction of Feed Lot Subarea controlled by lagoon (0 - 1); if not a Feed Lot Subarea then Fraction of Subarea controlled by lagoon (DALG) must be 0.
VLGN	Normal Lagoon Volume	Normal Lagoon Volume (VLGN) (mm); Lagoon storage at normal level in mm of runoff from the drainage area of a Feed Lot Subarea. Note: if Fraction of Subarea controlled by lagoon (DALG) = 0 then VLGN must = 0.
COWW	Lagoon Input from Wash Water	Lagoon Input from Wash Water (COWW); Wash water for milking parlor that drains into lagoon in cubic meters per cow per day. Lagoon input from wash water in m**3/animal unit/day. Note: if Fraction of Subarea controlled by lagoon (DALG) = 0 then COWW must = 0.
DDLG	Time To Reduce Lagoon Storage	Time To Reduce Lagoon Storage; from Max To Norm (DDLG) (Days). Note: if Fraction of Subarea controlled by lagoon (DALG) = 0 then DDLG must = 0.
SOLQ	Ratio Liquid/Total manure applied	Ratio Liquid/Total manure applied; in this Feed Lot Subarea. Fraction of total manure produced that goes into a lagoon. Note: if Fraction of Subarea controlled by lagoon (DALG) = 0 then SOLQ must = 0.

APPENDIX D—WATERSHED SUBAREA DEFINITIONS

TITLE	TITLE2	DIFF	UNITS
IE	Current Subarea	Current Subarea Number	
IO	Downstream Receiving Subarea	Receiving Subarea Number is the Downstream Subarea the Current Subarea drain into or $0 = \text{Outlet}$ to Watershed.	
ISOL	Soil	Soil number; soil selected from soil list.	
IOP	Management	Management (Operation schedule file); Selected Rotation of Cropping system. Note: if Cropping System is type Dryland then Irrigation Auto Trigger (BIR) must be 0. If Owner has herds and this is a feed lot subarea then fallow (one crop only) is the only crop that can be used. If feed lot has a lagoon then Irrigation must be a Lagoon Irrigation type.	
IOW	Owner	OWNER NUMBER; Owner Of Land In Subarea (set up in owners screen).	
IFED	Time Herd In Feed Lot	Fraction Of Time Herd In Feeding Area (Feed Lot)(II); 0 = Non Feeding Area; 0.001 - 1 = Fraction of Time Herd is in Feeding Area.	
NGZ	Grazing Area / Feed Lot	Grazing Area; 0 = For Non Grazing Area or Feeding Area; 1= Grazing Area 2 = Feed Lot (Feeding Area) Note: Feed Lot = Non grazing feeding area.	
IAPL	Auto. Manure FeedLot ID	Auto. Manure Feedlot ID.; 0 non manure application area; Use the positive subarea ID of the feedlot to indicate solid manure application; the negative subarea ID of the feedlot (lagoon) to indicate liquid manure application. Note: To use this option correctly, this subarea being build and the Auto. Manure Application subarea be entered, must be own by the same owner.	
IRR	Irrigation Code	Irrigation Code; 0 = dryland 1 = sprinkler irrigation 2 = furrow irrigation 3 = fertigation 4 = lagoon The irrigation code is used to specify whether irrigation is used and the type of irrigation. If furrow irrigation is specified irrigation induced erosion is calculated. If Fertigation is specified IDFT identifies the type of FERT and FNP the amount of FERT with each irrigation. If lagoon is specified, the concentration in tons of soils per m**3 of effluent is specified by FNP and the nutrient fraction by creating a FERT in the FERT file with the appropriate nutrients and selecting it with IDFT.	
LM	Lime Application Switch	Lime Application Switch; 0 = APPLIES LIME AS NEEDED AUTOMATICALLY; 1 = NO LIME APPLIED. EPIC enables the user to simulate application of agricultural limestone to increase soil pH and/or reduce soil aluminum saturation. For many soils and applications of EPIC, this feature is not needed; therefore, it can be turned off.	
WSA	Drainage Area	Subarea Drainage Area (WSA) (ha or acres); As a general rule, as fields become larger, the amount of sediment leaving per unit field area decreases. EPIC uses WSA to estimate soil erosion at the edge of the field. The units of WSA are hectares (metric) or acres (English). Usually WSA is small because EPIC assumes homogeneous soils and management Note: if this is a second extreme and it flow join the first extreme area flow but dose not flow throw first extreme area a - sign is add the front of the second extreme area WSA make it a negative number (this tills the program to add the second area WSA to the first extreme area when it has to do with water flow).	НА

CHL	Longest Distance From Outlet	Distance From Outlet to Most Distant Point in Subarea (CHL) (km or miles) The channel length is the distance along the channel from the most distant point on the subarea to the outlet. Often in small areas (approx. 1 ha) there is no defined channel. In such cases the length is measured along a concentrated flow path or it can simply be estimated from the length-width ratio of the subarea. For areas < 20 ha, the channel length measurement is not critical. In such cases, enter 0. Units are kilometers (metric) or miles (English). If this is a EXTREME subarea then Channel Length of Routing Reach MUST EQUAL Distance from Outlet. If this is a DOWNSTREAM subarea then Channel Length of Routing Reach can NOT BE EQUAL to Distance from Outlet.	KM
CHS	Subarea Channel Slope	Subarea channel slope (CHS) in m/m (Fraction); For small areas this measurement is not critical because CHS is only used in estimating the watersheds time of concentration. The dominant portion of the time of concentration is involved with overland rather than channel flow in small watersheds.	M/M
UPN	Surface Roughness Manning's N	See Appendix F—Manning's N Surface Roughness (UPN)	
SLG	Land Slope Length	Land Slope Length (m or feet); The subarea slope length can be estimated by field measurement as described by Wischmeier and Smith (1978) or from topographic maps using the Contour-Extreme Point Method (Williams and Berndt 1977).	M
SLP	Average Upland Slope	Average Upland Slope in m/m (Fraction); Must be entered. The average watershed slope can be estimated from field measurement or by using the Grid-Contour Method (Williams and Berndt 1977).	M/M
RCHS	Channel Slope Of Routing Reach	Channel Slope of Routing Reach in m/m (Fraction); The channel slope is computed by dividing the difference in elevation between the subareas inlet and outlet and the distant from inlet and outlet.	M/M
RCHL	Routing Reach Length	Length of Routing Reach (RCHL) in (km or miles); The length (distance) between where channel starts or enters the subarea and leaves the subarea. If this is an EXTREME subarea, then Routing Reach Length MUST EQUAL Longest Distance from Outlet (CHL). If this is a DOWNSTREAM subarea, then Routing Reach Length can not be equal to Longest Distance from Outlet.	KM
RCHN	Reach Channel Manning's N	See Appendix G—Routing Reach & Channel Manning's N (RCHN & CHN)	
type	Type Of Subarea	Type Of Subarea; Extreme Subarea has no inlet channel, Downstream Subarea has a inlet channel from another subarea	
CountyNam	County Name	County Name; the Name of the county from which the soil list comes.	
	Subarea Name	Subarea Name; the name for the Subarea Set to help User ID this subarea.	
WITH	Daily Weather Station	Daily Weather Station; used if the variable NGN in control table is greater than 0. Note: you must have .dly(s) to use this option.	
Heard	Herd Number	Herd Number; Number used in this subarea. Note: each herd can have only one feedlot and only one lagoon.	
PEC	Erosion Control Practice	Erosion Control Practice Factor (PEC); used to account for the effects of erosion control practices on soil erosion. The value of the PEC factor normally ranges from about 0.1 to 1.0 depending upon the effectiveness of the conservation practice. However, PEC can be set to 0.0 to eliminate water erosion entirely. When this is done, the soil profile remains relatively static because it is reset to initial conditions at the end of each year. This feature is very convenient for a comparison of alternative erosion control practices with total control of erosion. Default = 1.0 for non-contoured fields. For contoured and strip cropped fields, see Help.	
IFA	Min Interval For Auto Fert(days)	Minimum FERT; application interval for auto option (days).	

BFT	Auto Fert. Trigger (proportion)	Auto FERT Trigger (BFT); 0.00 For manual FERT; 0.80 0. < BFT < 1.0 allows percentage of stress; 1.00 no N stress, auto-FERT when needed; 5.00 if BFT is greater than 1, BFT is the PPM (G/T). N in soil at which automatic FERT is triggered N stress factor to trigger auto FERT (BFT). The automatic FERT trigger functions much like BIR for irrigation. When the plant nitrogen stress level reaches BFT, nitrogen FERT may be applied automatically. If this value is greater than 0 Amount of FERT (IDFT) per automatically scheduled application must be the Number of the FERT application. If BFT is greater than 1, BFT is the PPM (G/T) N in soil at which automatic FERT is triggered. (Activated only if IDF0 = 4) NOTE: To apply COMMERCIAL FERT, The FERIGATION AUTO TRIGGER (BFT) MUST BE SET to greater then 0. Any FERT or Manure application in management file will always be applied.	
СНК	Channel K Factor	CHANNEL K FACTOR (CHK); reflects channel's erodibility (0.0001-0.5). For example, with a rock condition, CHK should be 0.0001; with less rock (silt/mud) condition, it should be 0.30.	
BIR	Irrigation Auto Trigger	Water stress factor; to trigger automatic irrigation (BIR). To trigger automatic irrigation, the water stress factor is set: 0.0 Allows plants to be affected water stress 0.8 BIR > 0.0 AND BIR < 1.0 fraction of plant stress 1.0 Does not allow water stress BIR < 0.0 Plant available water deficit in root zone (-mm) BIR > 1.0 For soil water tension Kilopascals in top 200mm -1000.0 Sets water deficit high enough that only manual irrigations will occur Note: if Cropping System Type is Dryland, BIR must be 0.	
IRI	Min Interval For Irr.(days)	Minimum Application Interval (Automatic Irrigation) (IRI) [days]; Some irrigation systems can apply water only so often. The variable IRI enables the user to specify the minimum number of days between automatic irrigation applications. For our example, this will be set to 0 since irrigation is not used. (max 365 days)	
СНС	Channel C Factor	CHANNEL C FACTOR (CHC); (0.0001- 0.6); With bare channel condition, CHC should be set 0.1- 0.6 and if the channel has very good land cover, it should take a value of 0.0001.	
NIRI	Rigidity of irrigation code	Rigidity of irrigation code; for flexible applications. Applies minimum of FC-SW and ARMX. 1 for rigid applications. Applies input amount or ARMX. The irrigation code is used to specify the irrigation strategy. There are two mode of irrigating manual and automatic. If manual irrigation is selected, irrigation occurs on user specified dates and volumes. 0 = the irrigation is applied when needed and only as much as is needed. 1 = the application is according to the amounts specified, either by automatic application (ARMX) or by user input amounts and restrictions.	
IDF0	Auto Fert. Number	Auto FERT Number (IDF0); 0 for NO AUTOMATIC FERT OR MANURE applications; 1 for FERTIGATION FROM LAGOON; 2 for AUTOMATIC SOLID MANURE application from FEEDING AREA STOCK PILE; 4 for AUTOMATIC Commercial FERT application (defaults to ELEM N); 5 for AUTOMATIC SOLID MANURE application. NOTE: To apply AUTO MANURE application, MNUL in Control File MUST BE SET. To apply COMMERCIAL FERT, The FERTIGATION AUTO TRIGGER (BFT) MUST BE SET to greater than 0. Any FERT or Manure application in management file will always be applied.	
IDFX	Fert./ Manure	••	
FNP4	Auto Fert. Application Rate (N)	Auto FERT Application Rate (N); 0 variable rate of automatic commercial application (amount of FERT applied as need to lower N stress); fixed rate of automatic commercial application (set amount of FERT applied each time N stress is reached). Note: BFT (Auto FERT Trigger (proportion)) must be set, IDF0 (Auto FERT Type) must be set to 4 and IDF04 (Automatic commercial FERT Application) can not be 0 for this variable to work.	km

APPENDIX E—ADDING SUBAREA(S)

TITLE	TITLE2	UNITTYPE	UNITS	DIFF	
LCNO	Land Condition		0	LCNO (Land Condition); is used to find the curve number, for the selected crop(s), when building the. ops file.	
IFLS	Filter Strip Code	Whole Number 0 or 1	0	Filter Strip Code; 0 for normal subarea; 1 for filter strip Note: if Filter Strip Code = 1 then Fraction of floodplain flow must be set to 1 for a smooth terrain; 0.1 - 0.5 for rough terrain. Note: Fraction of floodplain flow will be changed auto to 1 and Buffer/Floodplain width will be set to (Drainage Area * 10) / Routing Reach Length when filter strip is change to 1.	
NVCN	Soil Moisture Index	Whole Number 0 or 4	0	Soil Moisture Index; 0 Variable daily CN Nonlinear CN/SW v depth soil water weighting; 1 = Variable daily CN Nonlinear CN/SW no depth weighting; 2 = Variable daily CN Linear CN/SW no depth weighting; 3 = Non-Varying CNCN2 used all storms; 4 = Variable daily CN SMI (Soil Moisture Index)".	
SNO	Water content of snow	(MM)	2	Water content of snow; snow on ground at start of simulation.	
STDO	Standing dead crop residue	t/ha	3	Standing dead crop residue	
XCT	LONG		0	X Coordinate of subarea centroid; longitude of subarea centroid It need to be entered if Spatially Generated Weather option is been used. Spatially Generated Weather is set by entering 0 in the variable NGN in control table. Note: A minus degree for western hemisphere.	
YCT	LAT		0	Y Coordinate of subarea centroid; latitude of subarea centroid. It need to be entered if Spatially Generated Weather option is been used. Spatially Generated Weather is set by entering 0 in the variable NGN in control table. Note: A minus degree for southern hemisphere.	
CHD	Channel depth	m	6	Channel depth	
CHN	Channel roughness Manning's N		0	See Appendix G—Routing Reach & Channel Manning's N (RCHN & CHN)	
FFPQ	Fraction of Buffer/floodplain flow		0	Fraction of Buffer/ floodplain flow; Partitions flow through filter strips.	
RCHD	Channel Depth of Routing Reach	m	6	Channel Depth of Routing Reach	
RCBW	Bottom Width of Channel of Routing Reach	m	6	Bottom Width of Channel of Routing Reach	
RCTW	Top Width of Channel of Routing Reach	m	6	Top Width of Channel of Routing Reach	
RFPW	Buffer/Floodplain width	m	6	Buffer/Floodplain width = (Drainage Area(WSA) X 10000) / (Floodplain length (RFPL) X 1000)	
RFPL	Buffer/Floodplain length	km	13	Buffer/Floodplain length	
RSEE	Elev of emergency spillway	M	6	Elevation at emergency spillway elevation	

RSAE	Total reservoir surface area	ha	11	Total reservoir surface area at emergency spillway elevation	
RSVE	Spillway Runoff volume	mm	2	Runoff volume at emergency spillway elevation.	
RSEP	Elevation of principal spillway	M	6	Elevation at principal spillway elevation.	
RSAP	Total reservoir surface area	ha	11	Total reservoir surface area at principle spillway elevation.	
RSV0	Volume at principal spillway elevation	mm	2	Volume at principal spillway elevation.	
RSV	Initial reservoir volumes	mm	2	Initial reservoir volumes.	
RSRR	Average principle spillway release rate	mm/hr	61	Average principle spillway release rate.	
RSYS	Initial sediment concentration in reservoirs		0	Initial sediment concentration in reservoirs (ppm)	
RSYN	Normal sediment concentration in reservoirs		0	Normal sediment concentration in reservoirs (ppm).	
RSHC	Hydraulic conductivity of reservoir bottoms	mm/hr	61	Hydraulic conductivity of reservoir bottoms.	
RSDP	Time for sediment to return to the normal		0	Time required for the sediment to return to the normal; time required in days for the sediment in the reservoir to return to the normal concentrations following a runoff event.	
RSBD	Bulk Density of Sediment in reservoir	T/M^3	36	Bulk Density of Sediment in Reservoir.	
IFD	Furrow Dike Code		0	Furrow Dike Code; 0 does not use a furrow dike system; 1 considers a furrow dike system.	
IDR	Drainage code	mm	2	Drainage code; no drainage 0 enter depth to drainage system.	
EFI	Runoff Irrigation		0	Runoff Irrigation; runoff vol/vol irrigation water applied. The irrigation runoff ratio specifies the fraction of each irrigation application that is lost to runoff.	
VIMX	Max. annual irrigation volume	mm	2	Maximum annual irrigation volume; allowed for each crop.	
ARMN	Min. single application volume	mm	2	Minimum single application volume; allowed for auto irrigation.	
ARMX	Max. single application volume	mm	2	Maximum single application volume; allowed for auto irrigation.	
FMX	Max. annual N fertilizer applied for a crop	kg/ha	4	Maximum annual N fertilizer applied for a crop.	
DRT	Time for drainage system to end plant stress		0	Time requirement for drainage system to end plant stress (days).	
FDSF	Fraction of furrow dike volume		0	Fraction of furrow dike volume available for water storage.	
FNP5	Automatic Manure application rate	kg/ha	4	Automatic Manure application rate. (Activated only if $IDF0 = 2$ or 4)	

SFLG	Safety factor for	0	Safety factor for Lagoon spillover (fraction 0_1). (Needed only	1
	Lagoon spillover		when $IRR = 4$)	

APPENDIX F—MANNING'S N SURFACE ROUGHNESS (UPN)

Surface Roughness Manning's N for Upland; the surface roughness factor is Manning's N.

Values of Manning's N for various conditions:

Overland flow	Value chosen Range			
Fallow, no residue	[.0100]	0.008-0.012		
Conventional tillage, no residu	ue [.0900]	0.06-0.12		
Conventional tillage, residue	[.1900]	0.16-0.22		
Chisel plow, no residue	[.0900]	0.06-0.12		
Chisel plow, residue	[.1300]	0.10-0.16		
Fall disking, residue	[.4000]	0.30-0.50		
No till, no residue	[.0700]	0.04-0.10		
No till (0.5-1.0 t/ha)	[.1200]	0.07-0.17		
No till (2.0-9.0 t/ha)	[.3000]	0.17-0.47		
Rangeland (20% cover)	[.6000]			
Short grass prairie	[.1500]	0.10-0.20		
Dense grass	[.2400]	0.17-0.30		
Bermuda grass	[.4100]	0.30-0.48		
(1) Blank if unknown (enter zero) [0000]				

⁽¹⁾ Blank if unknown (enter zero) [.0000]

APPENDIX G—ROUTING REACH & CHANNEL MANNING'S N (RCHN & CHN)

Reach Channel Manning's N (RCHN); if set to 0 will be calculated.

Type of Channel		Value	Chosen Range			
A. Excavated or dredged						
2.	Earth, straight and uniform Earth, winding and sluggish Not maintained, weeds and brush	.0250 .0350 .0750	.016033 .023050 .040140			
B. Natura	1 Streams					
1. 2.	Few trees, stones or brush Heavy timber and brush	.0500 .1000	.025065 .050150			

If the channel conducting runoff to the edge of the field is winding and/or contains obstructions, water flow rates will be reduced, and sediment will have an opportunity to settle. The channel roughness factor is referred to as the Manning's N value. The table contains suggested values of Manning's N for various conditions of channel flow.

APPENDIX H—PARM DEFINITIONS

- PARM(1) = CROP CANOPY-PET(1_2)

 FACTOR USED TO ADJUST CROP CANOPY RESISTANCE IN THE PENMAN-MONTEITH PET EO.
- PARM(2) = ROOT GROWTH-SOIL STRENGTH(1_2)

 NORMALLY 1.15<PARM(2)<1.2. SET TO 1.5 TO MINIMIZE SOIL

 STRENGTH CONSTRAINT ON ROOT GROWTH. PARM(2)>2. ELIMINATES

 ALL ROOT GROWTH STRESS.
- PARM(3) = WATER STRESS-HARVEST INDEX(0_1)

 SETS FRACTION OF GROWING SEASON WHEN WATER STRESS STARTS

 REDUCING HARVEST INDEX.
- PARM(4) = WATER STORAGE-N LEACHING(0_1)

 FRACTION OF SOIL POROSITY THAT INTERACTS WITH PERCOLATING
 WATER AS N LEACHING OCCURS.
- PARM(5) = SOIL WATER LOWER LIMIT(0_1)

 LOWER LIMIT OF WATER CONTENT IN THE TOP 0.5 M SOIL DEPTH

 EXPRESSED AS A FRACTION OF THE WILTING POINT WATER CONTENT.
- PARM(6) = WINTER DORMANCY(H)(0_1)

 CAUSES DORMANCY IN WINTER GROWN CROPS. GROWTH DOES NOT

 OCCUR WHEN DAY LENGTH IS LESS THAN ANNUAL MINIMUM DAY

 LENGTH + PARM(6).
- PARM(7) = N FIXATION(0_1)

 AT 1. FIXATION IS LIMITED BY SOIL WATER OR NITRATE CONTENT OR BY CROP GROWTH STAGE. At 0 FIXATION MEETS CROP N

 UPTAKE DEMAND. A COMBINATION OF THE 2 FIXATION ESTIMATES
- PARM(8) = SOLUBLE P ADSORPTION COEF(.1*M^3/T)(10_20)
 P CONCENTRATION IN SEDIMENT DIVIDED BY THAT OF THE WATER.
- PARM(9) = PEST DAMAGE MOISTURE THRESHOLD(MM)(25_150) PREVIOUS 30-DAY RAINFALL MINUS RUNOFF.
- PARM(10) = PEST DAMAGE COVER THRESHOLD(T/HA)(1_10) CROP RESIDUE + ABOVE GROUND BIOMASS.

IS OBTAINED BY SETTING 0 < Parm(7) < 1.

PARM(11) = MOISTURE REQUIRED FOR SEED GERMINATION(MM)(10_30)

- SOIL WATER STORED MINUS WILTING POINT STORAGE IN THE PLOW DEPTH (PMX = PARM(43).
- PARM(12) = SOIL EVAPORATION COEF(1.5_2.5)
 GOVERNS RATE OF SOIL EVAPORATION FROM TOP 0.2 M OF SOIL.
- PARM(13) = WIND ERODIBILITY COEF(0_3)

 ADJUSTS WIND SOIL ERODIBILITY FACTOR DOWNWARD AS LOOSE

 MATERIAL IS ERODED.
- PARM(14) = NITRATE LEACHING RATIO(0.1_1)

 NITRATE CONCENTRATION IN SURFACE RUNOFF TO NITRATE CONCENTRATION IN PERCOLATE.
- PARM(15) = RUNOFF CN WEIGHTING FACTOR(0.0_1.0)
 WEIGHTS CURRENT AND PREVIOUS DAYS CN--1.0 USES CURRENT
 ESTIMATE; 0.0 USES PREVIOUS DAYS CN.
- PARM(16) = EXPANDS CN RETENTION PARAMETER(1.0_1.5)

 VALUES > 1.0 EXPAND CN RETENTION PARAMETER AND REDUCE RUNOFF.
- PARM(17) = SOIL EVAPORATION-PLANT COVER FACTOR(0.01_0.5)
 REDUCES EFFECT OF PLANT COVER AS RELATED TO LAI IN
 REGULATING SOIL EVAPORATION.
- PARM(18) = SEDIMENT ROUTING EXPONENT(1_1.5)

 EXPONENT OF WATER VELOCITY FUNCTION FOR ESTIMATING POTENTIAL SEDIMENT CONCENTRATION.
- PARM(19) = SEDIMENT ROUTING COEF(T/M^3)(0.01_0.05)

 POTENTIAL SEDIMENT CONC WHEN FLOW VELOCITY = 1. M/S.
- PARM(20) = RUNOFF CURVE NUMBER INITIAL ABSTRACTION(0.05 0.4)
- PARM(21) = SOLUBLE C ADSORPTION COEF(.1*M^3/T)(10_20)
 C CONCENTRATION IN SEDIMENT DIVIDED BY THAT IN WATER.
- PARM(22) = REDUCES NRCS RUNOFF CN RETENTION PARM FOR FROZEN SOIL. FRACTION OF S FROZEN SOIL(0.05 0.5)
- PARM(23) = HARGREAVES PET EQ COEF(0.0023_0.0032) ORIGINAL VALUE = 0.0023
- PARM(24) = PESTICIDE LEACHING RATIO(0.1_1)

 PESTICIDE CONCENTRATION IN SURFACE RUNOFF TO PESTICIDE

 CONCENTRATION IN PERCOLATE.
- PARM(25) = NOT USED.

- PARM(26) = FRACTION OF MATURITY AT SPRING GROWTH INITIATION(0_1)
 ALLOWS FALL GROWING CROPS TO RESET HEAT UNIT INDEX TO A
 VALUE GREATER THAN 0 WHEN PASSING THROUGH THE MINIMUM
 TEMP MONTH.
- PARM(27) = CEC EFFECT ON NITRIFICATION & VOLATILIZATION(0_1)

 SETS LOWER LIMIT OF CEC CORRECTION FACTOR IN NIT/VOL

 FUNCTION. AT 0 CEC SHOULD PREVENT NIT/VOL PROCESS. AT 1

 CEC HAS NO EFFECT ON NIT/VOL.
- PARM(28) = NOT USED
- PARM(29) = BIOLOGICAL MIXING EFFICIENCY(0.1_0.5)

 SIMULATES MIXING IN TOP SOIL BY EARTH WORMS ETC. PARM(31)

 SETS DEPTH
- PARM(30) = SOLUBLE P RUNOFF EXPONENT(1_1.5) PROVIDES NONLINEAR EFFECT FOR SOLUBLE P/RUNOFF EQ.
- PARM(31) = MAXIMUM DEPTH FOR BIOLOGICAL MIXING(M)(0.1_0.3)
- PARM(32) = ORGANIC P LOSS EXPONENT(1_1.2)
 PROVIDES NONLINEAR EFFECT FOR ORGANIC P LOSS EQ.
- PARM(33) = COEFFICIENT IN MUST EQ(2.0_3.0) ORIGINAL VALUE = 2.5.
- PARM(34) = HARGREAVES PET EQ EXP(0.5_0.6)
 ORIGINAL VALUE=0.5. MODIFIED TO 0.6 TO INCREASE PET.
- PARM(35) = DENITRIFICATION SOIL-WATER THRESHOLD(.9_1.1) FRACTION OF FIELD CAPACITY SOIL WATER STORAGE TO TRIGGER DENITRIFICATION.
- PARM(36) = DENITRIFICATION RATE CONSTANT(.1_2)

 CONTROLS DENITRIFICATION RATE. TRADITIONAL VALUE = 1.4.

 PARM(37) = NOT USED.
- PARM(38) = WATER STRESS WEIGHTING COEF(0_1)

 AT 0 PLANT WATER STRESS IS STRICTLY A FUNCTION OF SOIL

 WATER CONTENT; AT 1 PLANT WATER STRESS IS STRICTLY A

 FUNCTION OF ACTUAL ET DIVIDED BY POTENTIAL ET.

 0<PARM(38)<1 CONSIDERS BOTH APPROACHES.
- PARM(39) = NOT USED.
- PARM(40) = GROUNDWATER STORAGE THRESHOLD(.001_1.)
 FRACTION OF GROUNDWATER STORAGE THAT INITIATES RETURN

FLOW.

- PARM(41) = PLANT ROOT TEMPERATURE STRESS EXP(.1_2.)

 EXP OF RATIO OF SOIL LAYER TEMP TO AVE OF PLANT OPTIMAL

 AND BASE TEMPS.
- PARM(42) = SCS CURVE NUMBER INDEX COEF(.3_2.5)

 REGULATES THE EFFECT OF PET IN DRIVING THE SCS CURVE

 NUMBER RETENTION PARAMETER.
- PARM(43) = PLOW LAYER DEPTH(M)

 USED TO TRACK SOLUBLE P CONCENTRATION OR WEIGHT.
- PARM(44) = NOT USED
- PARM(45) = SEDIMENT ROUTING TRAVEL TIME COEF(.5_10.)

 BRINGS INFLOW SEDIMENT CONC TO TRANSPORT CAPACITY

 CONC AS A FUNCTION OF TRAVEL TIME AND MEAN PARTICLE SIZE.
- PARM(46) = RUSLE C FACTOR COEF(.5_1.5)

 COEF IN EXPONENTIAL RESIDUE FUNCTION IN RESIDUE FACTOR.
- PARM(47) = RUSLE C FACTOR COEF(.5_1.5)

 COEF IN EXPONENTIAL CROP HEIGHT FUNCTION IN BIOMASS FACTOR.
- PARM(48) = ADJUSTS CLIMATIC STRESS FACTOR (AAP/AAT)/PARM(48) (50_80) SET TO 0.0 GIVES CLF=1.
- PARM(49) = MAXIMUM RAINFALL INTERCEPTION BY PLANT CANOPY(MM) (2. 15.)
- PARM(50) = RAINFALL INTERCEPTION COEF(.05 .3)
- PARM(51) = WATER STORAGE CAPACITY OF LITTER (RESIDUE) COEF (.1_.9) FRACTION OF LITTER WEIGHT.
- PARM(52) = EXPONENTIAL COEF IN EQ EXPRESSING TILLAGE EFFECT ON RESIDUE DECAY RATE(5. 15.)
- PARM(53) = COEF IN OXYGEN EQ USED IN MODIFYING MICROBIAL ACTIVITY WITH SOIL DEPTH(0.8 0.95)
- PARM(54) = N ENRICHMENT RATIO COEF FOR ROUTING (.4.7)
- PARM(55) = N ENRICHMENT RATIO EXP FOR ROUTING (.1 .3)
- PARM(56) = FRACTION DESTROYED BY BURN OPERATION (.5 1.)
- PARM(57) = P ENRICHMENT RATIO COEF FOR ROUTING (.05 .2)
- PARM(58) = P ENRICHMENT RATIO EXP FOR ROUTING (.2.4)
- PARM(59) = P UPWARD MOVEMENT BY EVAPORATION COEF (1 20)
- PARM(60) = MAXIMUM NUMBER OF DAYS A PASTURE IS GRAZED BEFORE

ROTATION (1-365)

- PARM(61) = SOIL WATER TENSION WEIGHTING FACTOR(0._1.)

 REGULATES UPWARD WATER FLOW AS A FUNCTION OF SOIL WATER

 TENSION IN THE LAYER OF INTEREST AND THE ONE ABOVE IT.

 0.0 ONLY CONSIDERS ABOVE LAYER TENSION. 1.0 ONLY CONSIDERS LAYER OF INTEREST'S TENSION.
- PARM(62) = MANURE EROSION EQ COEF(0.1_0.5)

 LARGER VALUES INCREASE MANURE EROSION.
- PARM(63) = PESTICIDE LOSS COEF(0.1_1.0)

 FRACTION OF POROSITY INTERACTING WITH PESTICIDES AS WATER
 FLOWS THROUGH A SOIL LAYER.
- PARM(64) = DUST DISTRIBUTION COEF(0.5_1.5)

 AFFECTS DUST DISTRIBUTION AS A FUNCTION OFDOWNWIND TRAVEL
 TIME.
- PARM(65) = NOT USED.
- PARM(66) = NOT USED.
- PARM(67) = DUST DISTRIBUTION DISPERSION EXPONENT(5.0_15.0)

 MODIFIES THE EFFECT OF THE ANGLE BETWEEN THE WIND

 DIRECTION AND THE CENTROID OF DOWNWIND SUBAREAS.
- PARM(68) = MANURE EROSION EXPONENT(0.1_1.0)

 MODIFIES EQ BASED ON WEIGHT OF MANURE ON SOIL SURFACE.
- PARM(69) = COEF ADJUSTS MICROBIAL ACTIVITY FUNCTION IN TOP SOIL LAYER (0.1 1.)
- PARM(70) = MICROBIAL DECAY RATE COEF(0.5_1.5)

 ADJUSTS SOIL WATER-TEMPERATURE-OXYGEN EQUATION.
- PARM(71) = MANURE EROSION COEF(1.0_1.5)

 MODIFIES EROSION ESTIMATE BASED ON ABOVE GROUND PLANT
 MATERIAL. PLANT MATERIAL LIVE AND DEAD REDUCE MANURE
 EROSION.
- PARM(72) = VOLATILIZATION/NITRIFICATION PARTITIONING COEF(0.05_0.5) FRACTION OF PROCESS ALOCATED TO VOLATILIZATION.
- PARM(73) = HYDROGRAPH DEVELOPMENT PARAMETER(0.1_0.9) STORAGE DEPLETION ROUTING EXP USED TO ESTIMATE TRAVEL TIME OUTFLOW RELATIONSHIP.
- PARM(74) = NOT USED.

- PARM(75) = FURROW IRRIGATION EROSION COEF(T/M^3)(0.01_0.05)

 POTENTIAL SEDIMENT CONC IN A FURROW WHEN FLOW VELOCITY
 = 1. M/S.
- PARM(76) = FURROW IRRIGATION SEDIMENT ROUTING EXPONENT(1_1.5)
 EXPONENT OF WATER VELOCITY FUNCTION FOR ESTIMATING
 POTENTIAL SEDIMENT CONCENTRATION.
- PARM(77) = RUNOFF AMOUNT TO DELAY PEST APPLICATION(MM)(0.0_25.0)
 PESTICIDE IS NOT APPLIED ON DAYS WITH RUNOFF GREATER THAN
 PARM(77).
- PARM(78) = SOIL WATER VALUE TO DELAY TILLAGE(0.0_1.0)
 TILLAGE DELAYED WHEN PDSW/FCSW>PARM(78).

APPENDIX I—APEX PUBLICATIONS

APEX Journal Article References

- 1. Azevedo, J.C., J.R. Williams, M.G. Messina, and R.F. Fisher. 2005. Impacts of the sustainable forestry initiative landscape level measures on hydrological processes. *Water Resour. Mange.* 19: 95
- 2. Azevedo, J.C., X.B. Wu, M.G. Messina, and R.F. Fisher. 2005. Assessment of sustainability in intensively managed forested landscapes: A case study in eastern Texas. *Soc. Amer. Foresters* 51(4): 321-333.
- 3. Chen, X., W. L. Harman, M. Magre, E. Wang, R. Srinivasan, J. R. Williams. 2000. "Water quality assessment with agro-environmental indexing of non-point sources, Trinity River Basin." Applied Engineering in Agriculture 16(4):405-417.
- 4. Fox, Garey A. 1998. "Investigation of High Plains Management Practices with the APEX Modeling System." Texas A&M Undergraduate Journal of Science, Vol. 2 (1):9-16, Spring issue.
- 5. Gassman, P.W., E. Osei, A. Saleh, and L.M. Hauck. 2002. Application of an environmental and economic modeling system for watershed assessments. *J. Amer. Water Res. Assoc.* 38(2): 423-438.
- 6. Gassman, P.W., E. Osei, A. Saleh, J. Rodecap, S. Norvell, and J.R. Williams. 2006. Alternative practices for sediment and nutrient loss control on livestock farms. *Agric., Ecosys. & Environ.* 17(2-3): 135-144.
- 7. Harman, W.L., E. Wang, and J.R. Williams. 2004. Reducing atrazine losses: water quality implications of alternative runoff control practices. *J. Environ. Qual.* 33: 7-12.
- 8. Harman, W.L. J.R. Williams, M. Magre, and E. Wang. 2004. Enviro-friendly cattle feedlots: Reducing nutrient losses with the APEX-feedlot model. Submitted to J. Environ. Qual.
- 9. Paudel, K.P., D. Hite, W. Intarapapong, and D. Susanto. 2003. A watershed-based economic model of alternative management practices in southern agricultural systems. *J. Agric. Applied Econ.* 35(2): 381-389.
- 10. Osei, E., B. Du, A. Bekele, L. Hauck, A. Saleh, and A. Tanter. 2008. Impacts of alternative manure application rates on Texas animal feeding operations: A macro level analysis. *J. Amer. Water Res. Assoc.* 44(3) (on-line; in press).
- 11. Osei, E., P.W. Gassman, R. Jones, S. Pratt, L. Hauck, L. Beran, W. Rosenthal, and J.R. Williams. 2000a. Economic and Environmental Impacts of Alternative Practices on Dairy Farms in an Agricultural Watershed. *J. Soil Water Cons.* 55(4): 466-472.
- 12. Osei, E., P.W. Gassman, L.M. Hauck, S. Neitsch, R.D. Jones, J. Mcnitt, and H. Jones. 2003a. Using Nutrient Management to Control Nutrient Losses from Dairy Pastures. *J. Range Manage*. 56: 218-226.
- 13. Osei, E., P.W. Gassman, L.M. Hauck, R. Jones, L. Beran, P.T. Dyke, D.W. Goss, J.D. Flowers, and A.M.S. McFarland. 2003b. Economic Costs and Environmental Benefits of Manure Incorporation on Dairy Waste Application Fields. *J. Environ. Manage*. 68(1): 1-11.
- 14. Qiu, Z., T. Prato, L. Godsey, and V. Benson. 2002. Integrated assessment of uses of woody draws in agricultural landscapes. *J. Amer. Water Resour. Assoc.* 38(5): 1255-1269.
- 15. Ramanarayanan, Tharacad S., M. V. Padmanabhan, G. N. Gajanan, Jimmy Williams. 1998. "Comparison of simulated and observed runoff and soil loss on three small United States watersheds." NATO ASI Series 1(55):76-88.
- 16. Saleh, A., J.G. Arnold, P.W. Gassman, L.W. Hauck, W.D. Rosenthal, J.R. Williams, and A.M.S. McFarland. 2000. Application of SWAT for the Upper North Bosque watershed. *Trans. ASAE* 43(5): 1077-1087.
- 17. Saleh, A. and O. Gallego. 2007. Application of SWAT and APEX using the SWAPP (SWAT-APEX) program for the Upper North Bosque River Watershed in Texas. *Trans. ASABE* 50(4): 1177-1187.
- 18. Saleh, A. J.R. Williams, J.C. Wood, L.M. Hauck, and W.H. Blackburn. 2004. Application of APEX for forestry. *Trans. ASAE* 47(3): 751-765.

- 19. Wang, E., C. Xin, J.R. Williams, and C. Xu. 2006. Predicting soil erosion for alternative land uses. *J. Environ. Qual.* 35: 459-467.
- 20. Wang, E., W. L. Harman, J. R. Williams, and J. M. Sweeten. 2002. "Profitability and nutrient losses of alternative manure application strategies with conservation tillage." J. Soil and Water Conservation 57(4):221-228.
- 21. Wang, X., W.E. Fox, J.R. Williams, P. Tuppad, D. Hoffman, J. Wolfe. 2008. Impact of watershed subdivision on APEX runoff and sediment load predictions. *J. Hydrol* (in review).
- Wang, X., P.W. Gassman, J.R. Williams, S. Potter, and A.R. Kemanian. 2008. Modeling the impacts of soil management practices on runoff, sediment yield, maize productivity, and soil organic carbon using APEX. *Soil Till. Res.* (in review).
- Wang, X., S.R. Potter, J.R. Williams, J.D. Atwood, and T. Pitts. 2006. Sensitivity analysis of APEX for national assessment. *Trans. ASABE* 49(3): 679-688.
- 24. Wang, X., A. Saleh, M.W. McBroom, J.R. Williams, and L. Yin. 2007. Test of APEX for nine forested watersheds in east Texas. *J. Environ. Qual.* 36: 983-995.
- Williams, J.R., W.L. Harman, M. Magre, U. Kizil, J.A. Lindley, G. Padmanabhan, and E. Wang. 2006. APEX feedlot water quality simulation. *Trans. ASAE* 49(1): 61-73.
- 26. Yin, L., X. Wang, J. Pan, and P.W. Gassman. 2007. Evaluation of APEX for daily runoff and sediment yield from three plots in the Upland Huaihe River watershed, China. *Trans. ASABE* (in review).

Model Review Journal Articles that include discussion about APEX

- 27. Borah, D.K., G. Yagow, A. Saleh, P.L. Barnes, W. Rosenthal, E.C. Krug, and L.M. Hauck. 2006. Sediment and nutrient modeling for TMDL development and implementation. *Trans. ASABE* 49(4): 967-986.
- 28. Srivastava, P., K.W. Migliaccio, and J. Šimůnek. 2007. Landscape models for simulating water quality at point, field, and watershed scales. *Trans. ASABE* 50(5): 1683-1693.
- 29. Williams, J.R., J.G. Arnold, J.R. Kiniry, P.W. Gassman, and C.H. Green. 2007. History of model development at Temple, Texas. *Hydrological Sciences Journal* (in review).

APEX book Chapters

- 30. Williams, J.R., J.G. Arnold, R. Srinivasan, and T.S. Ramanarayanan. 1998. APEX: A new tool for predicting the effects of climate and CO₂ changes on erosion and water quality. In: Modelling Soil Erosion by Water, 441-449. J. Boardman, J. and D. Favis-Mortlock, eds. NATO ASI Series / Global Environmental Change, Vol. I 55.Berlin, Germany: Springer-Verlag.
- 31. Williams, J.R. and R.C. Izaurralde. 2006. The APEX model. In *Watershed Models*, 437-482. Singh, V.P. and D.K. Frevert, eds. Boca Raton, Florida: CRC Press, Taylor & Francis.

Conference/Proceedings Papers that describe APEX applications

- 32. Gassman, P.W., J. Abraham, L. Hauck, A. Saleh, and K. Keplinger. 2001. Simulation of nutrient losses from chicken litter applications in east central Texas with APEX and SWAT. Presented at the 2001 ASAE Annual International Meeting, July 30-Aug. 1, Sacramento, CA. ASAE Paper No. 01-2004, St. Joseph, MI: American Society of Agricultural Engineers.
- 33. Gassman, P.W., A. Saleh, E. Osei, J. Abraham, and J. Rodecap. 2003. Environmental and economic impacts of alternative management scenarios for the Mineral Creek Watershed. In: Proceedings of the Total maximum Daily Load (TMDL) Environmental Regulations II, 323-331, Nov. 8-12, Albuquerque, NM. St. Joseph, MI: American Society of Agricultural Engineers.
- 34. Harman, Wyatte L., E. Wang, and J. R. Williams. 2002. "Herbicide remediation to protect water quality: Simulation results of APEX." Presented at the International Conference on Environmentally Sustainable

- Agriculture for Dry Areas for the 3rd Millennium, Shijiazhuang, Hebei, Peoples Republic of China, Sept. 15-19.
- 35. Harman, W. L., J. R. Williams, M. Magre, and E. Wang. 2003. "Reducing nutrient losses from CAFOs: A simulation analysis of feedlot management options and filter strip characteristics." Presented at the International Conference on Agriculture and Science Technology, Houston, Texas, Oct. 12 15.
- 36. Hauck, L.M., G. Ice, and A. Tanter. 2005. Challenges to and opportunities for applying the Comprehensive Economic and Environmental Optimization (CEEOT) Tool to forestry activities. In: Watershed Management to Meet Water Quality Standards and Emerging TMDL (Total Maximum Daily Load), Proceedings of the Third Conference, pp. 533-542, March 5-9, Atlanta, GA. American Society of Agricultural Engineers, St. Joseph, MI.
- 37. Intarapapong, W. and D. Hite. 2003. Watershed-level policies to implement best management practices under environmental risk. Presented at the Southern Agricultural Economics Association Annual Meeting, Feb. 1-5, Mobile, AL.
- 38. Intarapapong, W., D. Hite, and A. Renck. 2002. Environmental risk assessment under environmental standard and safety-first constraints. Presented at the Western Agricultural Economics Association Annual Meeting, July 28-31, Long Beach, CA.
- 39. Izaurralde, R. C., J. R. Williams, W. B. McGill, and N. J. Rosenberg. 2001. "Simulating Soil Carbon Dynamics, Erosion, and Tillage with EPIC." Paper presented at the First National Conference on Carbon Sequestration, Washington DC, May 14 17.
- 40. Osei, E., B. Du, and L.M. Hauck. 2007. Impacts of changing herd sizes on the effects of manure application rates. In: Watershed Management to Meet Water Quality Standards and TMDLs: 4th Conference Proceedings, March 10-14, San Antonio, TX, 59-66. A. McFarland and A. Saleh, eds. American Society of Agricultural and Biological Engineers, St. Joseph, MI.
- 41. Osei, E., B. Du, L.M. Hauck, A. Saleh, and A. Tanter. 2008. Macro-level analysis of CNMPs in the Ohio River Basin. In: Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment Conference, March 29-April 3, Concepción, Chile. E.W. Tollner and A. Saleh, eds. St. Jospeh, MI: American Society of Agricultural and Biological Engineers.
- 42. Osei, E., J. McNitt, P. Gassman, W. Rosenthal, and H. Jones. 1998. An economic and environmental appraisal of selected manure management practices in agricultural watersheds. In: Watershed Management: Moving from Theory to Implementation, March 3-6, Denver, CO, 1295-1302. Alexandria, VA: Water Environment Federation.
- 43. Ramanarayanan, T.S., J.R. Williams, W.A. Dugas, L.M. Hauck, and A.M.S. McFarland. 1997. Using APEX to identify alternative practices for animal waste management. Presented at the ASAE International Meeting, 10-14 August, Minneapolis, Minnesota. ASAE Paper No. 97-2209. St. Joseph, MI: American Society of Agricultural Engineers.
- 44. Saleh, A. and O. Gallego. 2007. Application of SWAT and APEX models using SWAPP (SWAT/APEX program) for the Upper North Bosque River watershed in Texas. In: Watershed Management to Meet Water Quality Standards and TMDLs: 4th Conference Proceedings, March 10-14, San Antonio, TX, 458-468. A. McFarland and A. Saleh, eds. American Society of Agricultural and Biological Engineers, St. Joseph, MI.
- 45. Saleh, A., P.W. Gassman, J. Abraham, and J. Rodecap. 2003. Application of SWAT and APEX models for Upper Maquoketa River watershed in northeast Iowa. Presented at the 2003 ASAE Annual International Meeting, July 27-30, Las Vegas, NV. ASAE Paper No. 032063, St. Joseph, MI: American Society of Agricultural Engineers.
- 46. Saleh, A., E. Osei, and O. Gallego. 2008. Use of CEEOT-SWAPP modeling system for targeting and evaluating environmental pollutants. In: Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment Conference, March 29-April 3, Concepción, Chile. E.W. Tollner and A. Saleh, eds. St. Jospeh, MI: American Society of Agricultural and Biological Engineers.

- 47. Saleh, A., J.R. Williams, J.C. Wood, L. Hauck, and W.H. Blackburn. 2001. Application of APEX for forestry. Presented at the 2005 ASAE International Meeting, July 17-20, Sacramento, CA. ASAE Paper No. 018004, St. Joseph, MI: American Society of Agricultural Engineers.
- 48. Saleh, A., J.R. Williams, J.C. Wood, L. Hauck, and W.H. Blackburn. 2003. Application of APEX for forestry. In: Proceedings of the Total Maximum Daily Load (TMDL) Environmental Regulations, March 11-13, Forth Worth, TX, 595-605. A. Saleh, ed. St. Joseph, MI: American Society of Agricultural Engineers.
- 49. Sanabria, Joaquin, Jay D Atwood, Paul T. Dyke, Jimmy R. Williams, and Andrew. P. Manale. 2000. "Precipitation Extreme Events and Land Management Practices for Flood Mitigation." In Proceedings of American Water Resources Association Conference on Water Resources in Extreme Environments, Editor Douglas L. Kane. May 1 3. Anchorage, AK.
- 50. Schilling, E., G. Ice, B. Wigley, M. Miwa, A. Saleh. 2007. Water quality issues facing the forest products industry: Current research focus and future research needs. In: Watershed Management to Meet Water Quality Standards and TMDLs: 4th Conference Proceedings, March 10-14, San Antonio, TX, 294-300. A. McFarland and A. Saleh, eds. American Society of Agricultural and Biological Engineers, St. Joseph, MI.
- 51. Williams, J.R. 2002. The APEX manure management component. In: Proceedings of the Total Maximum Daily Load (TMDL) Environmental Regulations, March 11-13, Forth Worth, TX, 44-51. A. Saleh, ed. St. Joseph, MI: American Society of Agricultural Engineers.
- 52. Williams, J.R., C.A. Jones, P.W. Gassman, and L.M. Hauck. 1995. Simulation of Animal Waste Management with APEX. In: Innovations and New Horizons in Livestock and Poultry Manure Management, pp. 22-26, September 6-7, Austin, TX.
- 53. Williams, J.R., S. Srinivasan, J.G. Arnold, and L.M. Hauck. 2000. Agricultural runoff modeling. In: Proceedings of the Workshop on Watershed Modeling, Watershed 2000, July 9, Vancouver, Canada. Alexandria, VA: Water Environment Federation.

Conference/Proceedings Papers that describe use of APEX within the National CEAP project

- 54. Kannan, N., C. Santhi, M. Di Luzio, S. Potter, and J.G. Arnold. 2005. Measuring environmental benefits of conservation practices: The Conservation Effects Assessment Project (CEAP)-a model calibration approach at the national level. Presented at the 2005 ASAE Annual International Meeting, Tampa, FL. ASAE Paper No. 05-2131. St. Joseph, MI: American Society of Agricultural Engineers.
- 55. Lemunyon, J.L. and R.L. Kellogg. 2008. Assessment of conservation benefits derived from conservation practices in the United States. In: Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment Conference, March 29-April 3, Concepción, Chile. E.W. Tollner and A. Saleh, eds. St. Jospeh, MI: American Society of Agricultural and Biological Engineers.
- 56. Santhi, C., N. Kannan, M. Di Luzio, S.R. Potter, J.G. Arnold, J.D. Atwood, and R.L. Kellogg. 2005. An approach for estimating water quality benefits of conservation practices at the national level. Presented at the 2005 ASAE International Meeting, July 17-20, Tampa, FL. ASAE Paper No. 052043, St. Joseph, MI: American Society of Agricultural Engineers.

Conference/Proceedings Papers that describe adaptations of APEX components

- 57. Houser, J.B., A. Saleh, and L.M. Hauck. 2003. Development and testing of dynamic fertilizer model to assess the effect of CNMPs in the North Bosque watershed. In: Proceedings of the Total maximum Daily Load (TMDL) Environmental Regulations II, November 8-12, Albuquerque, NM, 323-331. St. Joseph, MI: American Society of Agricultural Engineers.
- 58. Houser, J.B., A. Saleh, and L.M. Hauck. 2004. Calibration and verification of dynamic fertilizer model to assess the effect of CNMPs. Presented at the 2004 ASAE/CSAE Annual International Meeting, August 1-4, Ottawa, Canada. ASAE Paper No. 042258, St. Joseph, MI: American Society of Agricultural Engineers.

- 59. Houser, J.B., A. Saleh, and L.M. Hauck. 2005. Application of dynamic fertilizer model for assessment of CNMPs. In: Watershed Management to Meet Water Quality Standards and Emerging TMDL (Total Maximum Daily Load), Proceedings of the Third Conference, 320-329, March 5-9, Atlanta, GA. American Society of Agricultural Engineers, St. Joseph, MI.
- 60. Zhai, T. and R.H. Mohtar. 2004. Rangeland modeling Forage, water, and nutrients: Species competition and tree effects. Presented at the 2004 ASAE/CSAE Annual International Meeting, 1-4 August, Ottawa, Ontario, Canada. ASAE Paper 043039. St. Joseph, MI: American Society of Agricultural Engineers.

Other APEX Documents

- 61. Benson, Verel W., D. Todd Rarrand, Robert E. Young III and Peter Zimmell. Estimated Nutrient Movement with Alternative Poultry Litter Application rates on various soils, using different management systems. 2000.
- 62. Benson, V.W., P.T. Zimmel, A. Bross, D.L. Schuster, and J. Trujillo. 200. Newton and McDonald Counties contract broiler representative farm. FAPRI-UMC Report #08-00. Columbia, MO: Food and Agricultural Policy Research Institute, University of Missouri.
- 63. Dybala, T.J. 1998. Lake Aquilla Brazos River Authority Part I: Farm scale modeling using the Agricultural Policy Environmental Extender (APEX). Temple, TX: U.S. Department of Agriculture, Natural Resources Conservation Service, Water Resources Assessment Team. Available at: http://www.tx.nrcs.usda.gov/technical/wrat/projects/aquilla.html.
- 64. FAPRI. 2006. Missouri watershed water quality initiative. FAPRI-UMC Report #22-06. Columbia, MO: Food and Agricultural Policy Research Institute, University of Missouri. Available at: http://www.fapri.missouri.edu/outreach/publications/2006/FAPRI_UMC_Report_22_06.pdf.
- 65. FAPRI. 2007. Estimating water quality, air quality, and soil carbon benefits of the Conservation Reserve Program. FAPRI-UMC Report #01-07. Columbia, MO: Food and Agricultural Policy Research Institute, University of Missouri. Available at: http://www.fapri.missouri.edu/outreach/publications/2007/FAPRI UMC Report 01 07.pdf.
- 66. Flowers, J.D., J.R. Williams, and L.M. Hauck. 1996. NPP integrated modeling system: calibration of the APEX model for dairy waste application fields in Erath County, Texas. PR 96-07. Stephenville, Texas: TIAER, Tarleton State University.
- 67. Gassman, P.W. 1997. The National Pilot Program integrated modeling system: Environmental baseline assumptions and results for the APEX model. Livestock Series Report 9. Staff Report 97-SR 85. CARD, Iowa State Univ., Ames, IA.
- 68. Gassman, P.W. and L. Hauck. 1996. The environmental component of the National Pilot Project integrated modeling system. Livestock Series Report 8. Staff Report 96-SR 84. CARD, Iowa State Univ., Ames, IA.
- 69. Gassman, P.W., J.R. Williams, V.R. Benson, R.C. Izaurralde, L.M. Hauck, C.A. Jones, J.D. Atwood, J.R. Kiniry, and J.D. Flowers. 2005. Historical Development and Applications of the EPIC and APEX models. Working paper 05-WP 397. Ames, Iowa: Center for Agricultural and Rural Development, Iowa State University. Available at: http://www.card.iastate.edu/publications/DBS/PDFFiles/05wp397.pdf.
- 70. Harman, Wyatte L., Ranjan Muttiah, J. R. Williams, and Melanie Magre. 1998. Sedimentation of Lake Meredith: An Investigation of Water and Wind Deposition. BRC Report No. 01-25, Texas A & M University, Blackland Research Center, Temple.
- 71. Keith, G., S. Norvell, R. Jones, C. Maguire, E. Osei, A. Saleh, P. Gassman, and John Rodecap. 2000. Livestock and the environment: a national pilot project: CEEOT-LP modeling for the Upper Maquoketa River Watershed, Iowa: final report. Report No. PR0003. Stephenville, TX: Texas Institute for Applied Environmental Research, Tarleton State Univ. Available at: http://tiaer.tarleton.edu/library/library.cfm.
- 72. McNitt, J., R, Jones, E. Osei, L. Hauck, and H. Jones. 1999. Livestock on the environment: Precedents for runoff policy: Policy options CEEOT-LP. PR 9909. Stephenville, TX: Texas Institute for Applied Environmental Research, Tarleton State Univ. Available at: http://tiaer.tarleton.edu/library/library.cfm.

- 73. Osei, E., B. Du, A. Bekele, L. Hauck, A. Saleh, and A. Tanter. 2004. CEEOT-MMS: A macro modeling system for environmental assessment. TR0409. Stephenville, TX: Texas Institute for Applied Environmental Research, Tarleton State Univ.
- 74. Osei, E., P. Gassman, and A. Saleh. 2002. Livestock and the Environment: Economic and Environmental Modeling Using CEEOT. Report No. PR0002. Stephenville, TX: Texas Institute for Applied Environmental Research, Tarleton State Univ. Available at: http://tiaer.tarleton.edu/library/library.cfm.
- 75. Plotkin, S. 2007. I_APEX Calibration Using Research Plots in Tifton, Georgia. Amherst, MA: USDA-NRCS, National Agricultural Pesticide Risk Analysis (NAPRA) Project Team.
- 76. Pratt, S., R. Jones, and C.A. Jones. 1997. Livestock and the environment: Expanding the focus: Policy options CEEOT-LP. PR 96-03. Stephenville, TX: Texas Institute for Applied Environmental Research, Tarleton State Univ. Available at: http://tiaer.tarleton.edu/library/library.cfm.
- 77. Rosenthal, Wesley, Wyatte L. Harman, Erda Wang, and Benjamin Sheng. 2001. Arroyo Colorado River Nutrient Losses: An Investigation of Residue Management Through Conservation Tillage to Reduce Nutrient Losses. BRC Report No. 01-32. Texas A & M University, Blackland Research Center, Temple.
- 78. Rosenthal, Wesley, Wyatte L. Harman, J. R. Williams, and Melanie Magre. 1999. White River Lake Sedimentation: An Investigation of Range and Cropland Management Practices to Reduce Erosion. BRC Report NO. 01-26, Texas A & M University, Blackland Research Center, Temple.
- 79. Rosenthal, Wesley, Wyatte L. Harman, J. R. Williams, and Melanie Magre. 2000a. Lower Leon River Sedimentation: An Investigation of Range and Cropland Management Practices to Reduce Erosion. BRC Report No. 01-28, Texas A & M University, Blackland Research Center, Temple.
- 80. Rosenthal, Wesley, Wyatte L. Harman, J. R. Williams, and Melanie Magre. 2000b. Upper Leon River Sedimentation: An Investigation of Range and Cropland Management Practices to Reduce Erosion. BRC Report No. 01-29, Texas A & M University, Blackland Research Center, Temple.
- 81. Steglich, E. and J.R. Williams. 2008. APEX Users Manual. BREC Report # 2008-16. Temple, TX: Blackland Research & Extension Center. Texas AgriLIFE Research.
- 82. Williams, J. R., C. A. Jones, P. W. Gassman and L. M. Hauck. Simulation of Animal Waste Management with APEX, ABSTRACT.
- 83. Williams, J.R. and C. Izaurralde. 2005. The APEX Model. BRC Report No. 2005-02. Temple, TX: Texas A&M University, Texas Agricultural Extension Service, Texas Agricultural Experiment Station.

APPENDIX J—APEX BALANCES VARIABLE DEFINITIONS

These variables can be found in the *.OUT file

Variables common to all balances:

PER = percent error in the balance

DF = error in the balance (should be near 0.0)

Soil Water Balance (m³)

BSW = beginning soil water content

PCP = precipitation

Q = surface runoff

ET = evapotranspiration

PRK = percolation

SSF = lateral subsurface outflow

IRG = irrigation

SNO = initial water content of snow cover

QIN = inflow from external source to maintain water table

SSFI= subsurface inflow from upstream subarea

FPF = floodplain infiltration

QDR = flow from drainage system

QRF = quick return flow

RBK = back water from a reservoir

CPVH= lateral pipe outflow

PSOQ= inflow from a point source

RGDL=irrigation delivery loss

FSW = final soil water content

N Balance (kg/ha)

BTOT= beginning total N

RFN = rainfall N

Y = N loss with sediment

Q = soluble N loss in surface runoff

SSF = soluble N loss in lateral subsurface outflow

PRK = soluble N leaching loss

QRF = soluble N loss with quick return flow

DR = soluble N loss from drainage system

SSFI= soluble N inflow from upstream subsurface inflow

DN = denitrification loss

VOL = volatilization loss

BURN= N loss from burning crop residue or forest

YLD = N loss in crop yield

FIX = N fixation by legumes

FNMN= nitrate N fertilizer

FNMA= ammonia N fertilizer

FNO = organic N fertilizerSNOU= N loss when manure is removed from feedlots DEP = organic N loss or gain resulting from floodplain scour/deposition PSON= N contributed by point source ETOT= final total N ENMN= ENMA= EON= ESDN= ESON= EUNM= C Balance (kg/ha) BTOT= beginning total C Y = C loss with sediment PRK = C leaching loss Q = C loss in surface runoffRSPC= C loss from crop residue respiration RSDC= C added with crop residue TFOC= C added with organic fertilizer SCOU= C loss when manure is removed from feedlots DEP = C loss or gain resulting from floodplain scour/deposition FTOT= final total C ELSC= ELMC= EBMC= EHSC= EHPC= P Balance (kg/ha) BTOT= beginning total P Y = P loss with sedimentQ = soluble P loss in surface runoff PRK = soluble P leaching loss YLD = P loss in crop yieldFPML= labile P fertilizer FPO = organic P fertilizerSPOU= P loss when manure is removed from feedlots DEP = organic P loss or gain resulting from floodplain scour/deposition PSOP= P contributed by point source ETOT= final total P EPML= EPMA= EPMS= EPO= EFOP= ESDP= ESOP=

EUPM=

EPMU=

EPOU=

REFERENCES

Abruna, F., J. Rodriquez, and S. Silva. 1982. Crop response to soil acidity factors in Ultisols and Oxisols in Puerto Rico. VI. Grain sorghum. J. Agric. Univ. P.R. 61:28-38.

Acevedo, E., T.C. Hsiao, and D.W. Henderson. 1971. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 48:631-636.

Adams, W.A., 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J. Soil Sci. 24, 10-17.

Albrecht, S.L., S.M. Bennett, and K.J. Boote. 1984. Relationship of nitrogenase activity to plant water stress in field-grown soybeans. Field Crops Res. 8:61-71.

Andrews, R.E. and E.I. Newman. 1970. Root density and competition for nutrients. Oecol. Plant. 5:319-334.

Arnold, J.G., J. D. Atwood, V. W. Benson, R. Srinnivasan, and J. R. Williams. 1998. Potential Environmental and Economic Impacts of Implementing National Conservation Buffer Initiative Sedimentation Control Measures. USDA, NRCS Staff paper.

Bagnold,R.A., 1977. Bed-load transport by natural rivers. Water Resources Research, 13(2): 303-312.

Baier W., Robertson, Geo. W., 1965. Estimation of Latent Evaporation from Simple Weather Observations. Can. J. Plant Sci. Vol. 45 Pp. 276-284.

Begg, J.E., J.F. Bierhuizen, E.R. Lemon, D.K. Misra, R.O. Slatyer, and W.R. Stern. 1964. Diurnal energy and water exchanges in bulrush millet in an area of high solar radiation. Agric. Meteorol. 1:294-312.

Bonhomme, R., F. Ruget, M. Derieux, and P. Vincourt. 1982. Relations entre production de matiere seche aerienne et energie interceptee chez differents genotypes de mais. C.R. Adad. Sci. Paris 294:393-398.

Borg, H. and D.V. Grimes. 1986. Depth development of roots with time: An empirical description. Trans. ASAE 29:194-197.

Bouinols, A., M. Cabelguenne, C.A. Jones, A. Chalamet, J.L. Charpenteau, and J.R. Marty. 1991. Simulation of soybean nitrogen nutrition for a silty clay soil in southern France. Field Crops Res. 26:19-34.

Brenes, E. and R.W. Pearson. 1973. Root responses of three Gramineae species to soil acidity in an Oxisol and an Ultisol. Soil Sci. 116:295-302.

Chepil, W.S. 1956. Influence of moisture on erodibility of soil by wind. Soil Sci. Soc. Am. Proc. 20:288-292.

Cole, G.W., L. Lyles, and L.J. Hagen. 1982. A simulation model of daily wind erosion soil loss. 1982 ASAE Winter Meeting, Paper No. 82-2575.

DeJager, A. 1979. Localized stimulation of root growth and phosphate uptake in Zea mays L. resulting from restricted phosphate supply. pp. 391-403 In J.L. Harley and R. S. Russell (eds.) The Soil-Root Interface. Academic Press, New York.

Doorenbos, J. and A.H. Kassam. 1979. Yield response to water. Irrigation and Drainage Paper 33. Food Agric. Org. United Nations, Rome.

Eavis, B.W. 1972. Soil physical conditions affecting seedling root growth. I. Mechanical impedance, aeration, and moisture availability as influenced by bulk density and moisture levels in a sandy loam soil. Plant Soil 36:613-622.

Eik, K. and J.J. Hanway. 1965. Some factors affecting development and longevity of leaves of corn. Agron. J. 57:7-12.

Flowers, J. D., J. R. Williams, L. M. Hauck, 1996. Livestock and the Environment: A National Pilot Project NPP Integrated Modeling system: Calibration of the APEX Model for Dairy Waste Application Fields in Erath County, Texas. TIAER pr 96-07.

Foy, C.D., H.N. Lafever, J.W. Scuartz, and A.L. Fleming. 1974. Aluminum tolerance of wheat cultivars related to region of origin. Agron. J. 66:751-758.

Godwin, D.C., C.A. Jones, J.T. Ritchie, P.L.G. Vlek, and L.G. Youngdahl. 1984. The water and nitrogen components of the CERES models. pp. 95-100 In Proc. Intl. Symp. on Minimum Data Sets for Agrotechnology Transfer, March 1983, Patancheru, India. Intl. Crops Research Institute for the Semi-Arid Tropics.

Green, W. H. and G. A. Ampt. 1911. Studies on Soil Physics: 1. Flow of Air and Water Through Soils. Journal Agricultural Science 4:1-24.

Grossman, R.B., V.D. Nettleton, and B.R. Brasher. 1985. Application of pedology to plant response prediction for tropical vertisols. In Proc. Fifth Intl. Soil Classification Workshop, Sudan, November 1982.

Hagen, L.J., E. L. Skidmore, and J.B. Layton. 1988. Wind erosion abrasion: Effects of aggregate moisture. Trans. ASAE 31:725-728.

Hanks, R.J. 1983. Yield and water-use relationships: An overview. pp. 393-411 In H.M. Taylor, W.R. Jordan, and T.R. Sinclair, eds., Limitations to Efficient Water Use in Crop

Production. Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am., Madison, WI.

Hargreaves, G.H. and Z.A. Samani. 1985. Reference crop evapotranspiration from temperature. Applied Engr.

Agric. 1:96-99.

Harper, J.E. 1976. Contribution of dinitrogen and soil or fertilizer nitrogen to soybean production. pp. 101-107 In L.D. Hill (ed.) Proc. World Soybean Research Conf.

Hazen, Allen. 1930. Flood Flows, A Study of Frequencies and Magnitudes. John Wiley & Sons, Inc., New York.

Hershfield, D.M. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce Tech. Paper No. 40.

Izaurralde, R.C., J.R. Williams, W.B. McGill, N.J. Rosenberg, and M.C. Quiroga Jakas. 2004. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Submitted to Ecol. Modell.

Jarvis, S.C. and A.D. Robson. 1983. The effect of nitrogen nutrition of plants on the development of acidity in western Australian soils. I. Effects with subterranean clover grown under leaching conditions. Aust. J. Agric. Res. 34:341-353.

Jones, C.A. 1983a. A survey of the variability in tissue nitrogen and phosphorus concentrations in maize and grain sorghum. Field Crops Res. 6:133-147.

Jones, C.A. 1983b. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J. 47:1208-1211.

Jones, C.A. 1984. Estimation of percent aluminum saturation from soil chemical data. Commun. Soil Sci. Plant Anal. 15:327-335.

Jones, C.A. 1985. C-4 Grasses and Cereals. John Wiley & Sons, Inc., New York.

Jones, C.A., C.V. Cole, A.N. Sharpley, and J.R. Williams. 1984. A simplified soil and plant phosphorus model. I. Documentation. Soil Sci. Soc. Am. J. 48(4):800-805.

Jungk, A. and S.A. Barber. 1974. Phosphate uptake rate of corn roots as related to the proportion of the roots exposed to phosphate. Agron. J. 66:554-557.

Kamprath, E.J. 1970. Exchangeable aluminum as a criterion for liming leached mineral soils. Soil Sci. Soc. Am. Proc. 34:252-254.

Kiniry, J.R., J.R. Williams, P.W. Gassman, and P. Debaeke. 1992. A general, process-Oriented model for two competing plant species. Trans ASAE. Vol.35(3):801-810.

Kletke, D.D. 1979. Operation of the enterprise budget generator. Oklahoma State Univ., Agric. Exp. Sta. Res. Rept. P-790.

Knisel, W.G. 1980. CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural management systems. U.S. Dept. Agric. Conserv. Res. Rept. No. 26.

Leonard, R.A., W.G. Knisel, and D.A. Still. 1987. GLEAMS: Groundwater loading effects on agricultural management systems. Trans. ASAE 30(5):1403-1428.

McElroy, A.D., S.Y. Chiu, J.W. Nebgen, and others. 1976. Loading functions for assessment of water pollution from nonpoint sources. Environ. Prot. Tech. Serv., EPA 600/2-76-151.

McGrann, J.M., K.D. Olson, T.A. Powell, and T.R. Nelson. 1986. Microcomputer budget management system user manual. Dept. Agric. Econ., Texas A&M Univ., College Station.

Menzel, R.G. 1980. Enrichment ratios for water quality modeling. pp. 486-492 In W.G. Knisel, ed., CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural management systems. U.S. Dept. Agric. Conserv. Res. Rept. No. 26.

Monteith, J.L. 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19:205-234.

Monteith, J.L. 1973. Principles of Environmental Physics. Edward Arnold, London.

Monteith, J.L. 1977. Climate and the efficiency of crop production in Britain. Phil. Trans. Res. Soc. London Ser. B. 281:277-329.

Monteith, N.H. and C.L. Banath. 1965. The effect of soil strength on sugarcane growth. Trop. Agric. 42:293-296.

Muchow, R.C., D.B. Coates, G.L. Wilson, and M.A. Foale. 1982. Growth and productivity of irrigated Sorghum bicolor (L. Moench) in Northern Australia. I. Plant density and arrangement effects on light interception and distribution, and grain yield, in the hybrid Texas 610SR in low and medium latitudes. Aust. J. Agric. Res. 33:773-784.

Mugwira, L.M., S.J. Patel, and A.L. Fleming. 1980. Aluminum effects on growth and Al, Ca, Mg, K, and P levels in triticale, wheat, and rye. Plant Soil 57:467-470.

Nicks, A.D. 1974. Stochastic generation of the occurrence, pattern, and location of maximum amount of daily rainfall. pp. 154-171 In Proc. Symp. Statistical Hydrology, Aug.-Sept. 1971, Tucson, AZ. U.S. Dept. Agric., Misc. Publ. No. 1275.

Nicks, A.D., L.J. Lane. 1989. Chapter 2. Weather Generator. Pp. 2.1-2.19. Profile Model Documentation. USDA-Water Erosion Prediction Project: Hillslope Profile Version. NSERL Report No. 2, USDA-ARS National Soil Erosion Research Lab., West Lafayette, Indiana 47907.

Nyatsanga, T. and W.H. Pierre. 1973. Effect of nitrogen fixation by legumes on soil acidity. Agron. J. 65:936-940.

Onstad, C.A. and G.R. Foster. 1975. Erosion modeling on a watershed. Trans. ASAE 18(2):288-292.

Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173-1179.

Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J-C, Seastedt, T., Garcia Moya, E., Kamnalrut, A. and Kinyamario, J.I.., 1993. Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7, 785-809.

Parton, W.J., Ojima, D.S., Cole, C.V. and Schimel, D.S., 1994. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management. In: Quantitative Modeling of Soil Forming Processes, SSSA Spec. Public. No. 39, Madison, WI, pp. 147-167.

Patterson, T.G. and T.A. Larue. 1983. Nitrogen fixation (C2H2) by soybeans: Cultivars and seasonal effects and comparison of estimates. Crop. Sci. 23:488-492.

Pavan, M.A., F.T. Bingham, and P.F. Pratt. 1982. Toxicity of aluminum to coffee in Ultisols and Oxisols amended with CaC03, MgC03, and CaS04/2H20. Soil Sci. Soc. Am. J. 46:1201-1207.

Peech, M. 1965. Lime requirement. Agronomy 9:927-932.

Penman, H.L. 1948. Natural evaporation from open, bare soil and grass. Proc. Soc. London Ser. A193:120-145.

Pesek, J., G. Stanford, and N.L. Case. 1971. Nitrogen production and use. pp. 217-269 In R.A. Olson, ed., Fertilizer Technology and Use. Soil Sci. Soc. Am., Madison, WI.

Pierre, W.H., J.R. Webb, and W.D. Shrader. 1971. Quantitative effects of nitrogen fertilizer on the development and downward movement of soil acidity in relation to level of fertilization and crop removal in a continuous corn cropping system. Agron. J. 63:291-297.

Potter, K.N. and T.M. Zobeck. 1990. Estimation of soil microrelief. Trans. ASAE 33(1):156-161.

Potter, K.N., T.M. Zobeck, and L.J. Hagen. 1990. A microrelief index to estimate soil erodibility by wind. Trans. ASAE 33(1):151-155.

Priestley, C.H.B. and R.J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100:81-92.

Putman, J., J. Williams, and D. Sawyer. 1988. Using the erosion productivity calculator(EPIC) model to estimate the impact of soil erosion for the 1985 RCA appraisal. J. Soil Water Conserv. 43(4):321-326.

Reddy, K.R., R. Khaleel, M.R. Overcash, and P.W. Westerman. 1979. A nonpoint source model for land areas receiving animal wastes: II. Ammonia volatilization. Trans. ASAE 22(6):1398-1404.

Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder. 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). U. S. Dept. Agric., Agric. Res. Ser., Agriculture Handbook Number 703

Richardson, C.W. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Res. 17(1):182-19O.

Richardson, C.W. 1982. Dependence structure of daily temperature and solar radiation. Trans. ASAE 25(3):735-739.

Richardson, C.W. and D.A. Wright. 1984. WGEN: A model for generating daily weather variables. U.S. Dept. Agric., Agric. Res. Ser., ARS-8.

Ritchie, J.T. 1972. A model for predicting evaporation from a row crop with incomplete cover. Water Resources Res. 8:1204-1213.

Seligman, N.G. and H. van Keulen. 1981. PAPRAN: A simulation model of annual pasture production limited by rainfall and nitrogen. pp. 192-221 In M.J. Frissel and J.A. van Veen, eds., Simulation of Nitrogen Behaviour of Soil-Plant Systems, Proc. Workshop, Wageningen, Jan.-Feb. 1980.

Sharpley, A.N., C.A. Jones, and J.R. Williams. 1990. The nutrient component of EPIC. Chapter 7, pp. 152-166 In A.N. Sharpley and J.R. Williams (eds.) EPIC--Erosion/Productivity Impact Calculator: 1. Model Documentation. U.S. Dept. Agric. Tech. Bull. No. 1768.

Sharpley, A.N., C.A. Jones, C. Gray, and C.V. Cole. 1984. A simplified soil and plant phosphorus model: II. Prediction of labile, organic, and sorbed phosphorus. Soil Sci. Soc. Am. J. 48:800-805.

Sharpley, A.N., C.A. Jones, C. Gray, and others. 1985. A detailed phosphorus characterization of seventy-eight soils. U.S. Dept. Agric., Agric. Res. Ser., ARS-31.

Sharpley, A.N. and J.R. Williams, eds. 1990. EPIC--Erosion/Productivity Impact Calculator: 1. Model Documentation. U.S. Dept. Agric. Tech. Bull. No. 1768.

Simanton, J.R., E. Rawitz, and E.D. Shirley. 1984. Effects of rock fragments on erosion of semiarid rangeland soils. Chapter 7, pp. 65-72 In Erosion and Productivity of Soils Containing Rock Fragments. Soil Sci. Soc. Am., Madison, WI.

Skidmore, E.L. 1986. Wind-erosion climatic erosivity. Climate Change 9:195-208.

Soil Survey Staff. 1982. Procedures for collecting soil samples and methods of analysis for soil survey. U.S. Dept. Agric., Soil Conserv. Ser., Soil Survey Investigations Rept. No. 1 (revised August 1982). Washington, DC.

Stockle, C.O., J.R. Williams, N.J. Rosenberg, and C.A. Jones. 1992. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I-Modification of the EPIC model for climate change analysis. Agric. Systems 38:225-238.

Stout, J.E. 1990. Wind erosion with a simple field. Trans. ASAE 33:1597-1600.

Taylor, H.M. 1983. A program to increase plant available water through rooting modification. pp. 463-472 In Root Ecology and Its Practical Application. Intl. Symp., Gumpenstein, September 1982. Budndesanstalt fur alpenlandische Landwirtschalf, A-8952 Irding.

Taylor, H.M., G.M. Robertson, and J.J. Parker, Jr. 1966. Soil strength--root penetration relations for medium to coarse-textured soil materials. Soil Sci. 102:18-22.

Tollenaar, M., T.B. Daynard, and R.B. Hunter. 1979. Effect of temperature on rate of leaf appearance and flowering date of maize. Crop Sci. 19:363-366.

Thornley, J.H.M. 1976. Mathematical Models in Plant Physiology. Academic Press, New York.

Uchijima, Z., T. Udagawa, T. Horie, and K. Kobayashi. 1968. The penetration of direct solar radiation into corn canopy and the intensity of direct radiation on the foliage surface. J. Agron. Meteorol. Tokyo 3:141-151.

U.S. Department of Agriculture, Soil Conservation Service. 1972. National Engineering Handbook, Hydrology Section 4, Chapters 4-1O.

U.S. Department of Agriculture, Soil Conservation Service. 1986. Urban hydrology for small watersheds. Tech. Release 55.

U.S. Department of Commerce. 1968. Climatic Atlas of the United States. Environmental Science Services Administration, Environmental Data Service.

U.S. Department of Commerce. 1979. Maximum short duration rainfall. National Summary, Climatic Data.

Vitousek, P.M., Turner, D.R., Parton, W.J. and Sanford, R.L., 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: Patterns, mechanisms, and models. Ecology 75, 418-429.

Watts, W.R. 1972. Leaf extension in Zea mays. II. Leaf extension in response to independent variation of the temperature of the apical meristem, of the air around the leaves, and of the rootzone. J. Exp. Bot. 23:713-721.

Williams, J.R. 1975a. HYMO flood routing, J. Hydrology, 26, 17-27.

Williams, J.R. 1975b. Sediment yield prediction with universal equation using runoff energy factor. U.S. Dept. Agric., Agric. Res. Serv., ARS-S-40.

Williams, J.R. 1995. The EPIC Model. pp 909-1000 In V. P. Singh, Computer models of watershed hydrology, Water Resources Publications, Highlands Ranch, CO.

Williams, J.R. and R.W. Hann. 1978. Optimal operation of large agricultural watersheds with water quality constraints. Texas Water Resources Institute, Texas A&M Univ., Tech. Rept. No. 96.

Williams, J.R., C.A. Jones, and P.T. Dyke. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 27:129-144.

Williams, J.R., A.D. Nicks, and J.G. Arnold. 1985. SWRRB, a simulator for water resources in rural basins. ASCE Hydr. J., 111(6): 970-986.

Williams, J.R., J. G. Arnold, and R. Srinivasan. 2000. The APEX Model. Texas A&M Blackland Research Center Temple, BRC Report No. 00-06.

Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall erosion losses, a guide to conservation planning. U.S. Dept. Agric., Agric. Handbook No. 537.

Woodruff, N.P. and F.H. Siddoway. 1965. A wind erosion equation. Soil Sci. Soc. Am. Proc. 29(5):602-608.